

www.elsevier.nl/locate/jorganchem

Journal ()rgano metallic Chemistry

Journal of Organometallic Chemistry 612 (2000) 141-159

Disupersilyldisilane R*X₂Si-SiX₂R*: Darstellung, Charakterisierung und Strukturen; sterische Effekte der Substituenten[☆]

N. Wiberg *, H. Auer, W. Niedermayer, H. Nöth¹, H. Schwenk-Kircher¹, K. Polborn¹

Department Chemie der Universität München, Institut für Anorganische Chemie, Ludwig Maximilians Universität München, Butenandtstrasse 5-13, Haus D, D-81377 Munich, Germany

Eingegangen am 17 Mai 2000

Professor Dr. Herbert Schumann zum 65. Geburtstag gewidmet.

Abstract

Disupersilyldisilanes $R^{X_2}Si-SiX_2R^*$ ($R^* = supersilyl = Sit-Bu_3$; two diastereomers in case of $R^{XX'}Si-SiX'XR^*$) are prepared in organic solvent (i) by dehalogenations of supersilylhalosilanes with Na, $NaC_{10}H_8$ or NaR^* ; (ii) by reactions of disupersilylhalodisilanes with H⁻ (Hal/H exchange); (iii) by reactions of disupersilyldisilanes with Hal₂ (H/Hal exchange); (iv) by reactions of disupersilylhalodisilanes first with NaR* (Hal/Na exchange) then with agents for protonation, alkylation, silylation (Na/H, Na/Me, Na/SiMe₃ exchange); or (v) by reactions of disupersilyldisilenes (here R*PhSi=SiPhR*) with HHal or Hal₂ (formation of addition products). As discussed, (²⁹Si) of the SiX₂ groups of $R^*X_2Si-SiX_2R^*$ depends strongly on the nature of X. The disupersilyldisilanes are in part moisture sensitive (compounds with $SiX_2 = SiHHal$), in part sensitive against oxygen (compounds with $SiX_2 = SiHal_2$, SiHHal; Hal = Br, I). X-ray structure analyses of the disupersilvation $R^*X_2Si-SiX_2R^*$ ($X_2 = H_2$, Cl_2 , Br_2 , BrH, IH, MeBr, PhH, PhCl) as well as R*PhClSi–SiHPhR* and R*PhBrSi–SiClPhR* show a staggered conformation. Due to steric repulsions of groups $R^*/X/X$, the SiSi bond lengths are longer than 2.34 Å (normal SiSi single bond; exception: R*H₂Si-SiH₂R*). From the extent of SiSi bond elongation it is concluded that the bulkiness of X increases in direction H < Cl < Br, I, and $Br \approx Me < Ph$. Trans-configurated diastereomers are sterically more crowded than corresponding gaucheconfigurated compounds (trans and gauche refer to the configuration of the heaviest groups after trans-configurated R* in the disilanes). Indeed, bromination or iodination of R*H₂Si–SiH₂R* leads exclusively to gauche-R*HalHSi–SiHHalR*, but chlorination gives in addition R*Cl₂Si-SiH₂R*. Hydridation occurs faster with trans-R*PhClSi-SiHPhR* than with the gauchediastereomer. The R*/R* groups of the disupersilyldisilanes occupy exactly trans positions in R*X2Si-SiX2R*, trans-R*XX'Si-SiX'XR* and trans-R*PhClSi-SiHPhR*, whereas they occupy nearly trans positions in gauche-R*XX'Si-SiXX'R* (exception gauche-R*MeBrSi-SiBrMeR* with R* exactly trans). © 2000 Elsevier Science B.V. All rights reserved.

Schlüsselwörter: Silicon; Disupersilyldisilanes; Steric effects; NMR spectra; X-ray structure analyses

1. Einleitung

* See Ref. [1].

* Corresponding author. Tel.: +49-89-21807456; fax: +49-89-21807865.

E-mail address: niw@cup.uni-muenchen.de (N. Wiberg). ¹ X-ray structure analyses.

Wie wir in einer vorausgehenden Publikation berichteten [2], führt die Dehalogenierung von Supersilylsilanen $R*SiX_3$ ($R* = Supersilyl = Sit-Bu_3$; X =Halogen oder Halogen und H, Me, Ph) mit elektropo-Metallen sitiven Μ oder Alkalimetallsuper silaniden MR* vielfach im Sinne der Gl. (1) zunächst zu Disupersilyldisilanen R*X2Si-SiX2R* und darüber hinaus zu Disupersilyldisilenen R*XSi=SiXR* sowie

0022-328X/00/\$ - see front matter © 2000 Elsevier Science B.V. All rights reserved. PII: S0022-328X(00)00442-3

Um die Enthalogenierung (1b) besser studieren zu können, befaßten wir uns im Anschluß an die erwähnten Untersuchungen zunächst eingehend mit Synthesen von Disupersilyldisilanen $R^*X_2Si-SiX_2R^*$ ($R^* = Sit-$ Bu₃; X = H, Me, Ph, SiMe₃, Cl, Br, I), wobei wir naturgemäß hofften, anschließend durch Dehalogenierung halogenhaltiger Verbindungen $R^*X_2Si-SiX_2R^*$ gegebenenfalls zu metastabilen, bei Raumtemperatur isolierbaren Disupersilyldisilenen $R^*XSi=SiXR^*$ zu kommen, was in der Tat gelang [3].

Nachfolgend sei nun zunächst über Synthesen, dann über Charakterisierung und schließlich über Strukturen einiger Disupersilyldisilane $R^*X_2Si-SiX_2R^*$ berichtet (bezüglich vorläufiger Hinweise auf Synthesen einiger Verbindungen $R^*X_2Si-SiX_2R^*$, vgl. Refs. [4–6]). Eine weitere Veröffentlichung wird sich dann mit der — zu Disilenen und möglicherweise Disilinen führenden — Dehalogenierung halogenhaltiger Disupersilyldisilane $R^*X_2Si-SiX_2R^*$ beschäftigen [3]. Eine weitere Publikation soll Synthesen, Charakterisierung sowie Strukturen einiger Disupersilylsilane $R_2^*SiX_2$ und daraus gewinnbarer, Disupersilyldisilane $R_2^*XSi-SiX_3$ sowie Tetrasupersilytetrasilane $R_2^*XSi-SiX_2-SiXR_2^*$ zum Inhalt haben [7].

Für das Verständnis nachfolgender Ausführungen ist von Bedeutung, daß von Disupersilyldisilanen R*XX'Si-SiX'XR* Diastereomerenpaare existieren (vgl. Gl. (1)), wobei sich die genutzten Bezeichnungen gauche und trans auf die Konfiguration der nach transkonfiguriertem R* schwersten Substituenten der Disilane zueinander beziehen (bzgl. der CIP Nomenklatur vgl. Tabelle 1).

2. Synthesen der Disupersilyldisilane R*X₂Si–SiX₂R* (R* = Sit-Bu₃)

Die Synthese von Disupersilyldisilanen R^*X_2Si -Si X_2R^* kann in einigen Fällen gemäß Gl. (2) durch Verbindungsaufbau aus halogenhaltigen Supersilylmonosilanen R^*SiX_3 im Zuge einer dehalogenierenden Kopplung mit Alkalimetallen M (oder auch Alkalimetallsupersilaniden MR*) in organischen Medien erfolgen [2]:

Beispielsweise entstehen die Disilane R*H₂Si-SiH₂R* sowie R*MeHSi–SiHMeR* (gauche- und trans-Diastereomer im Molverhältnis ca. 1:1) in quantitativer Ausbeute durch Einwirkung von Na auf R*SiH2Cl und R*MeSiHCl in Benzol bzw. THF bei 65°C, das Disilan R*PhHSi-SiHPhR* (gauche- und trans-Diastereomer im Molverhältnis ca. 1:1) neben R*PhSiH₂ durch Einwirkung von Na auf R*PhSiHCl in Benzol bei 65°C oder von $NaC_{10}H_8$ in THF bei $-78^{\circ}C$ (in THF bei 65°C bildet sich ausschließlich R*PhSiH₂) und das Disilan R*PhClSi-SiHPhR* (gaucheund trans-Diastereomer im Molverhältnis ca. 2.7:1) in quantitativer Ausbeute neben R*H durch Einwirkung von NaR* auf R*PhSiHCl in THF bei tiefen Temperaturen. Offensichtlich reagiert Natrium mit den Halogensilanen R₃SiHal wie in anderen Fällen der Disilanbildung [4,8] zunächst zum Natriumsilanid NaSiR₃, das sich mit unumgesetzten Halogensilanen R₃SiHal unter nucleophiler Substitution von Halogenid gegen Silanid in das Disilan R₃Si-SiR₃ umwandelt (für Einzelheiten vgl. Ref. [2]). Die dehalogenierende Kopplung des Supersilylmonosilans R*PhSiHCl mit NaR* erfolgt allerdings nachgewiesenermaßen [2] auf einem anderen Wege über das Silylen R*PhSi, das gemäß R*PhSiHCl + NaR* → R*PhSi + NaCl + R*H entsteht und gemäß R*PhSi- $HCl + R^{*}PhSi \rightarrow R^{*}PhClSi-SiHPhR^{*}$ weiterreagiert.

Vielfach sind Disupersilyldisilane $R^*X_2Si-SiX_2R^*$ nicht durch Aufbau aus Supersilylmonosilanen gemäß (2), sondern nur durch **Verbindungsumwandlung** bereits vorliegender Disupersilyldisilane zugänglich. Als ungeeignet hat sich hierbei die — für die Gewinnung von Monosupersilylsilanen R^*SiX_3 bedeutungsvolle [2] — *Supersilanidierung* von Disilanen $X_3Si-SiX_3$ erwiesen. So bilden sich aus Si₂Cl₆ und NaR* in THF bei – 30°C die R*-haltigen Verbindungen R*Cl und R*SiCl₃. Möglich sollte etwa eine Supersilanidierung von Si₂F₆ zu R*F₂Si-SiF₂R* oder von ClH₂Si-SiH₂Cl zu R*H₂Si-SiH₂R* sein.

Eine gute Gewinnungsmöglichkeit für R^*X_2Si -Si X_2R^* besteht dagegen in der Hydrierung von Disupersilyldisilanen mit siliciumgebundenem Halogen gemäß Gl. (3) oder in der Halogenierung von Disupersilyldisilanen mit siliciumgebundenem Wasserstoff gemäß Gl. (4).

$$\begin{array}{c|c} \operatorname{Hal} & Hal \\ \operatorname{R}^{*} - \operatorname{Si} - \operatorname{Si} - \operatorname{R}^{*} + H^{-} & \underline{\mathbf{B}} & \operatorname{R}^{*} - \operatorname{Si} - \operatorname{Si} - \operatorname{Si} - \operatorname{R}^{*} \\ Hal & Hal & Hal & Hal & Hal & Hal \\ \end{array}$$

$$\underset{\substack{R^*-\stackrel{J}{S}i-Si-R^*}{|||} + Hal_2}{\overset{C}{\longrightarrow}} \qquad \underset{\substack{R^*-\stackrel{J}{S}i-Si-R^*}{|||} + Hal_2}{\overset{(4)}{\longrightarrow}}$$

N. Wiberg et al. / Journal of Organometallic Chemistry 612 (2000) 141-159

Tabelle 1

Darstellung und Charakterisierung von Disilanen $R^{*}X_{2}Si-SiX_{2}R^{*}$ ($R^{*} = Sit-Bu_{3}$; X = H, Hal, Me, Ph, SiMe_{3}) sowie $R^{*}X_{2}Si-SiX_{3}$ (X = H, I). Alle gewonnenen Disilane sind *farblose Feststoffe* (für $R^{*}XX'Si-SiXX'R^{*}$ existieren 2 Distereomere)

(Konfig.)	Disupersilyldisilane	а	DarstVerf.	Schmp. [°C]	²⁹ Si-NMR (C ₆ D ₆)			
	$R*X_2Si-SiX_2R*$				R*	SiX ₂	SiX ₂	
	Hal-Frei							
	R*H ₂ Si–SiH ₂ R* ^{b,c}	1	А	253	16.30	-107.40	-107.40	16.30
	R*H ₂ Si-SiH ₃		В	?	16.40	-119.1	-95.0	16.40
(meso-)	R*MeHSi–SiHMeR*	t	А	173 bis	14.31	-66.15	-66.15	14.31
(RR-/SS-)	R*MeHSi–SiHMeR*	g	А	179 ^d	16.66	-70.82	-70.82	16.66
meso	R*PhHSi–SiHPhR*	7t	В	>400 °	19.83	-52.34	-52.34	19.83
(RR-/SS-)	R*PhHSi–SiHPhR*	7g	В	>400 °	16.81	-59.23	- 59.23	16.81
(<i>R</i> -/S-)	$R^*(Me_3Si)HSi-SiH_2R^*$	0	D	d	26.72	-117.3	-109.8	22.56
	Cl-haltig							
(RR-/SS-)	R*HClSi–SiClHR*	g	С	d	14.54	-18.33	-18.33	14.54
	R*Cl ₂ Si–SiH ₂ R*		С	d	24.47	27.11	-90.71	9.92
(R-/S-)	R*Cl ₂ Si–SiHClR*		С	d	22.60	27.03	-19.44	16.21
	R*Cl ₂ Si–SiCl ₂ R* ^c	2	С	299	26.08	20.18	20.18	26.08
(meso-)	R*MeClSi–SiClMeR*	t	С	246 bis	16.64	14.88	14.88	16.64
(RR-/SS-)	R*MeClSi–SiClMeR*	g	С	253	19.47	12.59	12.59	19.47
(RR-/SS-)	R*PhClSi–SiHPhR*	8t	А	185 bis	23.16	2.38	-53.22	15.94
(RS-/SR-)	R*PhClSi–SiHPhR*	8g	А	190	24.02	8.28	-53.84	17.48
(meso-)	R*PhClSi-SiClPhR*	9t	С	290 bis	24.18	7.10	7.10	24.18
(RR-/SS-)	R*PhClSi-SiClPhR*	9g	С	310 ^e	23.82	3.53	3.53	23.82
	Br-haltig							
(R-/S-)	R*HBrSi–SiH ₂ R*		С	d	20.02	-29.70	-98.26	10.32
(RR-/SS-)	R*HBrSi–SiBrHR*	4 g	С	180	14.52	-31.61	-31.61	14.52
	R*Br ₂ Si–SiH ₂ R*		С	d	25.36	7.95	-86.9	9.54
(R-/S-)	R*Br ₂ Si–SiHBrR*		D	200 e	24.43	7.70	-32.04	17.20
(RR-/SS-)	R*Br ₂ Si–SiBr ₂ R* ^{b,c}	3	С	271	30.98	-0.29	-0.29	30.98
(RS-/SR-)	R*MeBrSi–SiHMeR* ^f	t	С	d	21.19	9.84	-62.70	11.19
(meso-)	R*MeBrSi–SiHMeR* ^f	g	С	d	20.51	6.31	-65.85	10.89
(RR-/SS-)	R*MeBrSi–SiBrMeR*	6t	С	255 bis	20.82	4.64	4.64	20.82
(R-/S-)	R*MeBrSi–SiBrMeR*	6g	С	259	19.97	2.11	2.11	19.97
(RS-/SR-)	R*MeBrSi–SiBr ₂ R*		D	268	24.38	9.38	2.75	25.15
(RR-/SS-)	R*PhBrSi–SiHPhR*	g	F	229	24.14	-3.25	-52.85	16.54
(RS-/SR-)	R*PhBrSi–SiBrPhR* ^b	g	F	271	25.82	-3.24	-3.24	25.82
(RR-/SS-)	R*(Me ₃ Si)HSi–SiHBrR*	t	D	d	27.88	-105.74	-24.45	16.84
(R-/S-)	R*(Me ₃ Si)HSi–SiHBrR*	g	D	d	30.64	-106.50	-28.73	16.86
(RR-/SS-)	R*H(MeO)Si-SiBr ₂ R*		D	d	13.24	-0.56	13.12	20.75
	R*H(MeO)Si-Si(OMe)HR*	g	D	d	11.37	-2.63	-2.63	11.37
(2) (2)	I-haltig		~	a		60.00		
(R-/S-)	$R*HISI-SIH_2R*$	-	C	a 01.4	20.83	-69.00	-95.72	9.30
(RR-/SS-)	R*HISI-SiIHR*	5g	C	214	13.94	-65.91	-65.91	13.94
(R-/S-)	R*I ₂ SI-SIHIR*		C	u	25.85	-56.22	-64.36	15.18
	$R^{*}I_{2}S_{1}-S_{1}I_{2}R^{*}$		C	218 °	34.07	- 59.93	- 59.93	34.07
	$R*I_2SI-SII_3$		С	194	25.05	- 56.51	?	25.05
(meso.)	Hal/Hal'-haltig R*HBrSi_SiHC1P* ^f	+	C	d	15 16	_ 30 57	_ 10.00	14.26
(RR_{-}/SS)	R*HBrSi_SiHCIP* ^f	ι σ	C	d	16.00	- 31.06	_ 10 20	14.20
(R/S)	D*CIBrS; SH D*f	g	C	d	25.15	- 51.00	- 19.29	14.05
$(\mathbf{R} \mathbf{S})$	$\mathbf{P} * \mathbf{P}_r \mathbf{S}_i \mathbf{S}_i \mathbf{P}_r \mathbf{C} \mathbf{I} \mathbf{D} * \mathbf{f}$		C	278 °	20.13	20.74	-07.95	30.20
(R_{-}/S_{-})	$R * ClBrSi_SiCl P * f$		Č	210 256 °	29.14 27 01	2.93 13 51	9.23	27 04
$(R - \beta - \beta)$	$\mathbf{P} = \mathbf{P} = $	c.	C	250	21.24	15.51	10.05	21.74 28 22
$(\mathbf{N}\mathbf{K}^{\prime}\mathbf{S}\mathbf{S}^{\prime}\mathbf{S})$	R CIDISI-SIDICIR D*DhD+S; S;CIDhD*	g 10≁	C	: 260 d	20.22	12.13	12.13	20.22
(DD/CC)	D*DhBrS; S;CIDhD*	100	C	200 260 d	25.20	: .	1.40 2.21	23.20
(RR_{-}/SS^{-})	R*ClBrSi_SiBrHD*	rug	č	200 d	24.30 23.11	: 16.83	_ 2.31	2 4 .30 16.81
(111-)00-)		s	C C		43.14	10.05	- 31.22	10.01

^a g und t beziehen sich auf das *gauche*- und *trans*-Diastereomere eines Disilans mit *gauche*- oder *trans*-Anordnung der nach *trans*- oder näherungsweise *trans*-konfigurierten R* Substituenten schwersten Gruppen X. Bei R*MeBrSi–SiHMeR* bezieht sich g und t auf die Stellung der Me-Gruppen.

^b Gemeinsam mit Dr. T. Passler.

^c Gemeinsam mit Dr. Ch. M.M. Finger.

^d Nicht in Reinsubstanz isoliert.

^e Zersetzung.

^f Gemeinsam mit Dr S. Wagner.

Abb. 1. (a) Struktur von R*Br₂Si-SiBr₂R* im Kristall (monoklin, C2/c; Operator K. Polborn) und verwendete Atomnumerierung (Punktsymmetrie des Disilans $\approx C_{2h}$; H-Atome unberücksichtigt). Analog sind R*H₂Si-SiH₂R* im Kristall (orthorhombisch, Pbca; H anstelle von Br; Operator K. Polborn) und R*Cl2Si-SiCl2R* im Kristall (orthorhombisch, Pbca; Cl anstelle von Br; Operator K. Polborn) gebaut. Ausgewählte Bindungslängen [Å] und -winkel [°] im Molekül mit Standardabweichungen. R*Br2Si-SiBr2R*: Si1-Si2 2.458(4), Si2-Si2A 2.423(6), Br1-Si2 2.257(3), Br2-Si2 2.244(3), Si-C (Mittelwert) 1.935. Si1-Si2-Si2A 130.2(2), Br1-Si2-Si1 105.5(1), Br2-Si2-Si1 108.8(1), Br1-Si2-Br2 103.7(1), Br1-Si2-Si2A 103.5(2), Br2-Si2-Si2A 102.4(2), C-Si-Si (Mittelwert) 107.2, C-Si-C (Mittelwert) 111.6. Bezüglich der Tosionswinkel vgl. Abb. 1b. R*H2Si-SiH2R*: Si1-Si2 2.369(1), Si2-Si2A 2.332(2), Si-C (Mittelwert) 1.932. Si1-Si2-Si2A 120.64(5), C-Si-Si (Mittelwert) 106.5, C-Si-C (Mittelwert) 112.2. Bezüglich der Torsionswinkel vgl. Abb. 1b. R*Cl₂Si-SiCl₂R*: Si1-Si2 2.435(1), Si2-Si2A 2.411(1), Cl1-Si2 2.074(1), Cl2-Si2 2.079(1), Si-C (Mittelwert) 1.940. Si1-Si2-Si2A 127.97(4), Cl1-Si2-Si1 108.68(4), Cl2-Si2-Si1 106.35(4), Cl1-Si2-Cl2 104.15(5), C11-Si2-Si2A 102.66(5), C12-Si2-Si2A 104.82(4), C-Si-Si (Mittelwert) 106.59, C-Si-C (Mittelwert) 112.19. Bezüglich der Torsionswinkel vgl. Abb. 1b. (b) Newman-Projektion des Moleküls R*Br₂Si-SiBr₂R* (analog ist R*Cl₂Si-SiCl₂R* gebaut; Torsionswinkel in Klammern; für R*H2Si-SiH2R* beträgt der SiSiSiSi-Torsionswinkel 180.00°). Vgl. auch Abb. 1a.

Auf diese Weise läßt sich etwa R*PhClSi-SiHPhR* mit LiAlH₄ in THF quantitativ unter Verminderung des Halogenierungsgrades in R*PhHSi-SiHPhR* überführen, während $R^{RHSi-SiHRR*}$ (R = H, Me, Ph) mit Halogenen (oder halogenliefernden Substanzen wie CHBr₃) unter Erhöhung des Halogenierungsgrades in Disilane mit unterschiedlicher Halogenzahl, -position und -art umgewandelt wird. In diesem Zusammenhang ergaben sich zwei interessante Beobachtungen: (i) Von den beiden Disupersilyldisilanen gauche- und trans-R*PhClSi–SiHPhR* im Gemisch (Molverhältnis 2.7:1) wird die trans-Form deutlich rascher als die gauche-Form — und zwar erwartungsgemäß unter Inversion betreffenden Si-Substitutionszentren — von der LiAlH₄ hydriert (vgl. hierzu auch Bromierung von gauche- und trans-R*MeHSi–SiHMeR*, Section 5). (ii) Die Halogenierung von R*H₂Si–SiH₂R* mit der doppeltmolaren Menge an Br₂ sowie I₂ führt ausschließlich zu R*BrHSi–SiHBrR* sowie R*IHSi–SiHIR*, während die Chlorierung außer zu R*ClHSi–SiHClR* auch zu isomerem R*Cl₂Si–SiH₂R* führt. Im Falle von R*HalHSi–SiHHalR* entsteht hierbei jeweils nur eines von zwei möglichen Diastereomeren (gauche-Form, s. unten).

Dem Austausch von Halogen gegen Wasserstoff entspricht der Ersatz von Halogen zunächst gegen Natrium (Gl. (5a)) und dann von Natrium gegen Wasserstoff (Gl. (5b)), dem Austausch von Wasserstoff gegen Halogen der Ersatz von Supersilylgruppen gegen das Halogen Iod (Gl. (6)):

$$\begin{array}{c|c} Hal & | & \mathbf{D} \\ R^* - \overset{Hal}{Si} - \overset{Hal}{Si} - \overset{H}{R^*} & \overset{H}{\underset{(a) + NaR^*; - R^*Hal}{(b) + MeOH; -MeONa}} & \overset{H}{R^*} - \overset{I}{\underset{|}{Si}} - \overset{I}{Si} - \overset{K}{R^*} \end{array}$$
(5)

$$\underset{R^{*}-Si-Si-R^{*}}{|} \xrightarrow{E} \qquad \underset{+I_{2};-R^{*}I}{\overset{} \longrightarrow} \qquad \underset{R^{*}-Si-Si-I}{|} \qquad (6)$$

Nach Gl. (5) kann etwa $R*Br_2Si-SiBr_2R*$ in R*Br₂Si-SiHBrR* sowie R*BrHSi-SiH₂R* in R*H₂Si-SiH₂R* und nach Gl. (6) R*I₂Si-SiI₂R* in R*I₂Si–SiI₂ ungewandelt werden. An die Stelle der Protonierung (Gl. (5b)) kann auch eine Methylierung oder Silylierung treten (z.B. Überführung von R*Br₂Si-SiBr₂R* in R*MeBrSi-SiBr₂R* sowie von $R*BrHSi-SiH_2R*$ in $R*(Me_3Si)HSi-SiH_2R*)$.

Existieren 1,2-Disupersilyldisilene R*XSi=SiXR* (z.B. *trans*-R*PhSi=SiPhR*), so sind halogenierte 1,2-Disupersilyldisilane (z.B. R*PhBrSi–SiHPhR*, R*Ph-BrSi–SiBrPhR*) durch HHal- oder Hal₂-Addition an die SiSi-Doppelbindung gemäß der Gl. (7) zugänglich (es entsteht jeweils nur eines der beiden denkbaren Diasteromeren, offensichtlich die *gauche*-Form).

Die von uns gewonnenen Disupersilyldisilane $R*X_2Si-SiX_2R*$ sind in Tabelle 1 mit den genutzten Syntheseverfahren (**A** bis **F**) aufgeführt. In diesem Zusammenhang sei noch erwähnt, daß auch eine Reihe von Disupersilyldigermanen, -distannanen und -diplumbanen des Typs $R*X_2E-EX_2R*$ (E = Ge, Sn, Pb; X = Me, Ph, Cl) synthetisiert werden konnten [9].

3. Charakterisierung der Disupersilyldisilane R*X₂Si-SiX₂R* (R* = Sit-Bu₃)

Einige Kenndaten der Disupersilyldisilane R^*X_2Si -Si X_2R^* sind der Tabelle 1 zu entnehmen. Hierbei ist zu berücksichtigen, daß für Disilane $R^*XX'Si$ -SiXX' R^* mit unterschiedlichen Substituenten X und X' jeweils 2 Diastereomere existieren können (vgl. hierzu Einleitung; nicht in jedem Falle wurden — wie Tabelle 1 veranschaulicht — beide Formen aufgefunden). Alle Verbindungen stellen farblose Festsubstanzen dar, deren Löslichkeit in organischen Medien mit wachsendem Halogenierungsgrad abnimmt, so daß Tetrahalogendisupersilyldisilane R*Hal₂Si-SiHal₂R* schwer bis fast unlöslich sind. Auch wächst die Unlöslichkeit in Richtung trans-R*XX'Si-SiX'XR*→gauche-R*XX'Si-SiX'-XR* deutlich. Bei Vorliegen von SiH- oder SiH2-Gruppen liefern die Verbindungen eine oder mehrere starke Infrarotabsorptionen im Wellenzahlenbereich um 2100 cm⁻¹. Insbesondere die ²⁹Si-NMR-Signallagen der SiX₂-Gruppen hängen stark von der Art der X-Reste ab (Tabelle 1). Wie im Falle der Supersilylmonosilane R*SiX₃ [2] beobachtet man eine Hochfeldverschiebung der betreffenden Signale beim Übergang von Verbindungen $R^*X_2Si-SiX_2R^*$ mit X = Cl (i) zu entsprechenden Verbindungen mit X = Br und (in stärkerem Ausmaße) mit X = I sowie (ii) zu Verbindungen mit X = H. Der Übergang von trans- zu gauchekonfigurierten Disupersilyldisilanen R*XX'Si-SiX'XR* ist mit einer Hochfeldverschiebung von δ^{29} Si verbunden (Tabelle 1). Typischerweise liegen die ²⁹Si-NMR-Signale für die Gruppen R*XX'Si in folgenden — in Klammern wiedergegebenen – Bereichen: R*H₂Si (-100), R*HClSi (-20), R*HBrSi (-30), R*HISi (-65), R*Cl₂Si (+20), R*Br₂Si (± 0) , R*I₂Si (-55), R*MeHSi/R*PhHSi (-50) (bzgl. anderer Di- und Tetrasilane vgl. Ref. [10], bzgl. δ^{29} Si dieser Verbindungen [11]). Die besonders starken sterischen Behinderungen in *trans*-konfigurierten Diastereomeren zeigen sich in verbreiterten NMR-Signalen der Me-Gruppen von R* sowie in Signalaufspaltungen der Si-gebundenen Ph-Gruppen. Die Kopplungskonstanten ¹J_{SiH} liegen für R*X₂Si–SiX₂R* im Bereich 170–180 Hz (vgl. Section 5).

Alle Disupersilyldisilane R*X2Si-SiX2R* verhalten sich vergleichsweise thermostabil. Nicht- oder perhalogenierte Verbindungen $R^*X_2Si-SiX_2R^*$ (X = H, Organyl oder Hal) sind gegen Hydrolyse oder Methanolyse stabil, ansonsten mehr oder weniger instabil (Abnahme der Empfindlichkeit in Richtung wachsender Zahl und Masse des Halogens). Löst man demgemäß ein Gemisch von $\mathbb{R}^*\mathbb{B}r_{2-n}\mathbb{H}_n\mathbb{S}i-\mathbb{S}i\mathbb{H}_n\mathbb{B}r_{2-n}\mathbb{R}^*$ (n = 0, 1, 2)in MeOH, so methanolysieren alle Verbindungen bis auf R*Br₂Si-SiBr₂R* und R*H₂Si-SiH₂R*. Oxidationen mit Luft (in Anwesenheit von Wasserspuren) erfolgen im Falle der brom- und iodhaltigen, nicht dagegen der chlorhaltigen Disilane R*X2Si-SiX2R* mit bis zu drei Halogenatomen (Bildung von Br₂, I₂). Bezüglich weiterer Reaktionen vgl. das im Zusammenhang mit den Synthesen Besprochene, bezüglich der Reduktionen (Dehalogenierungen) von R*X₂Si-SiX₂R* zu Disupersilyldisilenen R*XSi=SiXR* vgl. Ref. [3].

Tabelle 2

Ausgewählte Bindungslängen (r), Bindungswinkel (α) und SiSiSiSi-Diederwinkel (δ) der röntgenstrukturanalytisch untersuchten Disupersilyldisilane R*X₂Si-SiX₂R*=t-Bu₃Si-SiX₂-SiX₂-Sit-Bu₃

Disupersilylo	disilane	r(SiSi) [Å]	$r(SiR^*)$ [Å]	δ (SiSiSi) [°]	$\alpha(Si_4)$ [°]	
Nr. ^a	Formel					
1	R*H ₂ Si–SiH ₂ R*	2.334(2)	2.368(1)	120.6(1)	180	
2	R*Cl ₂ Si–SiCl ₂ R*	2.411(1)	2.435(1)	128.0(1)	180	
3	R*Br ₂ Si–SiBr ₂ R*	2.423(6)	2.458(4)	130.2(2)	180	
4g	R*BrHSi–SiHBrR*	2.371(4)	2.403 ^b	123.2 ^ь	159.2	
5g	R*IHSi–SiHIR*	2.378(2)	2.403 °	122.9 °	151.6	
6g	R*MeBrSi-SiBrMeR*	2.423(2)	2.440(2)	125.0(1)	180	
t	R*MeBrSi–SiBrMeR* ^d t	2.423(2)	2.440(2)	125.0(1)	180	
7g	R*PhHSi–SiHPhR* °	2.402(1)	2.417(1)	121.1(1)	151.4	
8g	R*PhClSi-SiHPhR* °	2.402(1)	2.423(1)	119.9(1)	151.4	
0			2.417(1)	121.1(1)		
t	R*PhClSi-SiHPhR* f	2.414(2)	2.451(1)	123.8(1)	180	
9t	R*PhClSi-SiClPhR*	2.431(2)	2.470(1)	125.1(1)	180	
10t	R*PhBrSi-SiClPhR*	2.434(2)	2.466(2)	124.5(1)	180	

^a g, gauche; t, trans hinsichtlich der nach R* raumerfüllendsten Gruppen.

^b Mittelwert aus 2.391(4) und 2.395(5) Å sowie 123.4(2) und 123.1(2)°.

^c Mittelwert aus 2.406(2) und 2.399(2) Å sowie 123.14(6) und 122.61(5)°.

^d Die beiden Br-Atome (Me-Gruppen) sind auf den gauche- bzw. trans-Positionen statistisch im Verhältnis 1:1 verteilt.

^e Mischkristalle aus **7g** und **8g**; Cl-Positionen zu 42% durch H ersetzt. Für **8g** bezieht sich der erste Wert $r(SiR^*)$ und $\alpha(SiSiSi)$ auf die Gruppierung SiClR*, der zweite Wert auf die Gruppierung SiHR*.

^f Die Si-gebundenen H- und Cl-Atome sind statistisch auf beide Si-Atome verteilt, was röntgenstrukturanalytisch einen symmetrischen Bau von **8t** vortäuscht. Übertrüge man die Verhältnisse von **8g** auf **8t**, so ergäbe sich folgendes: $r(SiClR^*)/r(SiHR^*) = 2.454/2.448$ sowie $\alpha(SiClR^*)/\alpha(SiHR^*) = 123.2/124.4^{\circ}$.

Abb. 2. (a) Struktur von gauche-R*BrHSi-SiHBrR* im Kristall (monoklin, P21/n; Operator K. Polborn) und verwendete Atomnumerierung (Punktsymmetrie des Disilans $\approx C_2$; H-Atome unberücksichtigt). Analog ist R*IHSi-SiHIR* im Kristall (monoklin, P21/c; I anstelle von Br; Operator K. Polborn) gebaut. Ausgewählte Bindungslängen [A] und -winkel [°] im Molekül mit Standardabweichungen. Gauche-R*BrHSi-SiHBrR*: Si1-Si2/Si3-Si4 2.391(4)/ 2.395(5), Si2-Si3 2.371(4), Br1-Si2/Br2-Si3 2.239(4)/2.244(4) Si-C (Mittelwert) 1.929. Si3–Si2–Si1/Si2–Si3–Si4 123.4(2)/123.1(2), Br1-Si2-Si3/Br2-Si3-Si2 105.8(1)/105.4(2), Br1-Si2-Si1/Br2-Si3-Si4 110.8(2)/110.3(1), C-Si-Si (Mittelwert) 106.0, C-Si-C (Mittelwert) 112.7. Bezüglich der Torsionswinkel vgl. Abb. 2b. Gauche-R*IHSi-SiHIR*: Si1-Si2/Si3-Si4 2.406(2)/2.399(2), Si2-Si3 2.378(2), I1-Si2/I2-Si3 2.483(2)/2.479(1), Si-C (Mittelwert) 1.946. Si3-Si2-Si1/ Si2-Si3-Si4 123.14(6)/122.61(6), I1-Si2-Si3/I2-Si3-Si2 105.83(5)/ 105.07(5), I1–Si2–Si1/I2–Si3–Si4 111.95(3)/113.44(6), C-Si-Si (Mittelwert) 106.3, C-Si-C (Mittelwert) 112.4. Bezüglich der Torsionswinkel vgl. Abb. 2b. (b) Newman-Projektion des Moleküls gauche-R*BrHSi-SiHBrR* (analog ist R*IHSi-SiHIR* gebaut: Torsionswinkel in Klammern). Vgl. auch Abb. 2a.

4. Strukturen einiger Disupersilyldisilane R*X₂Si–SiX₂R* (R* = Sit-Bu₃)

Die zwölf in Tabelle 2 aufgeführten Disupersilyldisilane (genauer: Hexa-*tert*-butyltetrasilane) R^*X_2Si -Si X_2R^* wurden röntgenstrukturanalytisch aufgeklärt (von **6g/6t** und von **7g/8g** kamen Mischkristalle zur Untersuchung). Über die Molekülstrukturen von **1/2/3**, von **4g/5g**, von **6g/6t**, von **7g/8g**, von **8t** und von **9t/10t** in Kristallen informieren die Abb. 1a, 2a, 3a, 4a, 5a und 6a zusammen mit ausgewählten Bindungslängen und -winkeln (vgl. hierzu auch Tabelle 3; g = gauche und t = trans weist auf die räumliche Anordnung der nach *trans*- oder näherungsweise *trans*-konfigurierten R*-Substituenten — raumerfüllendsten Gruppen im Disilan). Die Abb. 1b, 2b, 3b, 4b, 5b und 6b geben Newman-Projektionen der betreffenden Verbindungen wieder, die Abb. 4c und 5c veranschaulichen Kalottenmodelle der Verbindungen **8g** und **8t**, aus denen zugleich die Raumerfüllung (Sperrigkeit) der Supersilylgruppe hervorgeht.

In einer vorausgehenden Publikation [2] konnte gezeigt werden, daß sterische Effekte, d.h. der Raumbedarf der Si-gebundenen Gruppen, wesentlich den *SiSi-Abstand* in Disilanen bestimmen. Für Supersilylsilane t-Bu₃Si–SiX₃ wächst dieser — wie gefunden wurde [2] — von 2.399 Å (SiX₃ = SiCl₂Ph) über 2.433 Å (SiI₃) und 2.450 Å (SiPh₃) bis 2.697 Å (Sit-Bu₃; t-Bu₃Si–Sit-Bu₃ weist den bisher längsten aufgefundenen SiSi-Abstand in Disilanen auf; SiSi-Normalabstand 2.34 Å [10]), so daß also der Raumbedarf der Si-gebundenen Gruppen in Richtung Cl < I < Ph < t-Bu steigt.

Entsprechende Verhältnisse findet man für Disupersilyldisilane t-Bu₃Si–SiX₂–SiX₂–Sit-Bu₃, wobei sich allerdings der wachsende Raumbedarf von X weniger deutlichauf die SiSi-Bindungslängen auswirkt als im Falle von t-Bu₃Si–SiX₃, da der sterische Druck von X zusätzlich durch SiSiSi-Winkelaufweitungen ausgeglichen werden kann. Demgemäß wachsen die SiSi- und SiR*-

Abb. 3. (a) Struktur von gauche- und trans-R*MeBrSi-SiBrMeR* (trinklin, P-1; die beiden Me-Gruppen und beiden Br-Atome sind auf den gauche- bzw. trans-Positionen statistisch im Verhältnis 1:1 verteilt. Operatoren H. Nöth, H. Schwenk-Kircher) und verwendete Atomnumerierung (Punktsymmetrie C_2 (gauche) und C_i (trans); H-Atome unberücksichtigt). Ausgewählte Bindungslängen [Å] und winkel [°] in den Molekülen mit Standardabweichungen (erster/zweiter Wert bezieht sich auf das eine/das andere Molekül): Si1-Si1A 2.423(2)/2.423(2), Si1-Si2 2.440(2)/2.440(2), Si1-Br1 2.170(2)/2.154(2), Si1-C13 1.79(5)/1.77(5), Si-C (Mittelwert) 1.952. Si2-Si1-Si1A 125.01(8)/125.01(8), Br1-Si1-C13 97(3)/97(3), $Br1-Si1-Si2 \ 108.61(7)/105.74(7), \ Br1-Si1-Si1A \ 106.76(9)/105.81(8),$ C13-Si1-Si2 106.0(4)/108.0(3), C13-Si1-Si1A 111.0(3)/110.0(4), C-Si2-Si1 (Mittelwert) 107.7, C-Si2-C (Mittelwert) 111.1. Bezüglich der Torsionswinkel vgl. Abb. 3b. (b) Newman-Projektion der Moleküle gauche- und trans-R*MeBrSi-SiBrMeR*. Vgl. auch Abb. 3a.

	1	2	3	4g	5g	6g/6t	$\mathbf{7g}/\mathbf{8g}{\cdot}\mathbf{C}_{6}\mathbf{H}_{6}$	8t·0.5 C ₆ H ₆	$9t \cdot C_6H_5CH_3$	10t
Formel M.	C ₂₄ H ₅₈ Si ₄ 459.06	C ₂₄ H ₅₄ Cl ₄ Si ₄ 596.83	C ₂₄ H ₅₄ Br ₄ Si ₄ 774.67	C ₂₄ H ₅₆ Br ₂ Si ₄ 616.87	C ₂₄ H ₅₆ I ₂ Si ₄ 710.85	$C_{26}H_{60}Br_2Si_4$ 644.92	a 709.20	C ₄₂ H ₇₁ ClSi ₄ 723.80	C ₄₃ H ₇₁ Cl ₂ Si ₄ 771.26	C ₃₆ H ₆₄ BrClSi ₄ 724.59
Habitus ^b T (K)	Platten (P) 293(2)	Platten (P) 293(2)	Platten (T) 293(2)	Platten (M) 296(2)	Oktaeder (B) 294(2)	Platten (B) 293(2)	Platten (B) 293(2)	Stäbchen (B) 293(2)	Platten (To) 193	Platten (B) 293(2)
Mo-K _a	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
System	orthorhombisch	orthorhombisch	monoklin	monoklin	monoklin	triklin	monoklin	triklin	triklin	monoklin
Raumgr.	Pbca	Pbca	C2/c	<i>P</i> 21/ <i>n</i>	<i>P</i> 21/ <i>c</i>	$P\overline{1}$	<i>P</i> 21/ <i>n</i>	$P\overline{1}$	$P\overline{1}$	C2/c
a (Å)	14.785(2)	14.406(3)	9.715(3)	14.351(4)	15.337(2)	8.4185(3)	14.070(3)	9.627(1)	9.663(5)	21.216(6)
b (Å)	13.898(2)	9.116(4)	13.926(5)	14.024(5)	13.694(2)	8.5019(3)	13.966(5)	11.407(1)	11.424(7)	9.270(2)
c (Å)	15.022(2)	25.012(3)	25.324(5)	17.553(6)	15.938(2)	13.0010(5)	22.860(7)	12.242(1)	12.352(7)	21.016(4)
α (°)	90.00(2)	90.00(2)	90.00(3)	90.00(2)	90.00(1)	93.187(1)	90.00(3)	107.490(7)	107.88(1)	90.00(2)
β (°)	90.00(2)	90.00(1)	99.45(2)	113.08(2)	90.51(1)	101.302(1)	97.46(2)	102.06(1)	101.68(1)	100.34(2)
γ (°)	90.00(2)	90.00(2)	90.00(3)	90.00(2)	90.00(1)	112.189(1)	90.00(2)	112.257(9)	112.74(1)	90.00(2)
$V(Å^3)$	3086.7(7)	3284(2)	3379(2)	3250(2)	3347.2(8)	832.25(5)	4454(2)	1104.6(2)	1114(1)	4067(2)
Z	4	4	4	4	4	1	4	1	1	4
$\rho \text{ (g cm}^{-3})$	0.988	1.207	1.523	1.261	1.411	1.287	1.058	1.088	1.150	1.184
$\mu ({\rm mm}^{-1})$	0.201	0.519	4.918	2.652	2.033	2.593	0.194	0.221	0.281	1.217
F(000)	1032	1288	1576	1304	1448	342	1557	396	419	1552
Bereiche (°)	$0 \le h \le 16$	$-16 \le h \le 0$	$0 \le h \le 10$	$-15 \le h \le 14$	$-18 \le h \le 18$	$-10 \le h \le 10$	$0 \le h \le 15$	$-10 \le h \le 9$	$-11 \le h \le 11$	$-23 \le h \le 23$
	$0 \le k \le 15$	$0 \le k \le 10$	$0 \le k \le 15$	$0 \le k \le 15$	$0 \le k \le 16$	$-8 \le k \le 10$	$0 \le k \le 15$	$0 \le k \le 12$	$-14 \leq k \leq 13$	$-10 \le k \le 0$
	$0 \le l \le 16$	$-28 \le l \le 0$	$-27 \le l \le 27$	$0 \le l \le 9$	$0 \le l \le 18$	$-15 \le l \le 15$	$-24 \le l \le 25$	$-13 \le l \le 12$	$-14 \le l \le 14$	$-23 \le l \le 23$
θ (°)	2.43-22.98	2.77-23.98	2.58-23.00	2.12-22.97	2.36-24.97	1.62-20.57	2.31-25.17	3.02-22.97	1.86-27.14	2.53-23.03
Reflexe	2147	2582	2518	3152	6102	4246	6474	3240	4702	5636
unabh.	1902	2181	2357	2982	5866	3174	6211	3064	3069	2826
(R_{int})	0.0000	0.0655	0.0257	0.0347	0.0258	0.0477	0.0179	0.0204	0.0415	0.0345
beob. ^c	2147	2156	2357	2982	4844	2450	4590	2492	2807	2054
x/y^{d}	0.0674/1.5132	0.0377/1.7993	0.1477/8.5980	0.0946/169.5980	0.0763/4.0940	0.1030/2.0714	0.0305/2.9820	0.1289/3.0236	0.0942/1.7897	0.0432/4.1646
GOOF	1.051	1.067	0.925	1.105	0.999	1.158	1.051	0.679	1.120	1.109
$R_1^{\rm c}$	0.0397	0.0333	0.0663	0.078	0.0317	0.0595	0.0502	0.0475	0.0542	0.0424
wR_2	0.1157	0.0777	0.1972	0.2201	0.1060	0.1836	0.0939	0.1370	0.1612	0.0866
Max/Min.	0.286 / -0.152	0.363 / -0.239	1.158 / -0.724	0.645/-0.991	0.883/-1.103	0.465 / -0.461	0.216 / -0.186	0.458 / -0.225	0.881/-0.528	0.473/-0.207
Restelektrone	en			.,		,	.,			
dichte (e										
Å ⁻³)										

Tabelle 3 Ausgewählte Parameter zu den Röntgenstrukturanalysen der in Zeile 1 wiedergegebenen Verbindungen (vgl. Tabelle 2)

^a $C_{42}H_{71.37}Cl_{0.58}Si_4$. ^b In Klammern Solvens, aus welchem die Kristalle gewonnen wurden (P = Pentan, B = Benzol, To = Toluol, T = Tetrahydrofuran, M = Methylenchlorid).

^c $F > 4\sigma(F)$.

^d Gewichtung: $w^{-1} = \sigma^2 F_o^2 + (xP)^2 + yP$ mit $P = (F_o^2 + 2F_c^2)/3$.

Abb. 4. (a) Struktur von *trans*-R*PhClSi–SiHPhR* im Kristall (trinklin, $P\bar{1}$; Operator K. Polborn) und verwendete Atomnumerierung, H-Atome unberücksichtigt). Ausgewählte Bindungslängen [Å] und -winkel [°] im Molekül mit Standardabweichungen. Si1–Si1A 2.414(2), Si1–Si2 2.451(1), Si1–Cl 1.895(3), Si1–Cl1 2.127(2), Si–C (Mittelwert) 1.945. Si1A–Si1–Si2 123.77(6), C1–Si1–Cl1 103.4(1), C1–Si1–Si1A 108.3(1), C1–Si1–Si2 110.7(1), C11–Si1–Si2 103.32(6), C11–Si1A 105.26(7), C–Si2–Si1 (Mittelwert) 107.7, C–Si2–C (Mittelwert) 111.2. Bezüglich der Torsionswinkel vgl. Abb. 4b. (b) Newman-Projektion des Moleküls *trans*-R*PhClSi–SiHPhR*: Vgl. auch Abb. 4a. (c) Raumerfüllungsmodell von *trans*-R*PhClSi–SiHPhR*.

Bindungslängen von $R^*X_2Si-SiX_2R^*$ und zugleich die betreffenden SiSiSi-Bindungswinkel in Richtung der Verbindungen 1, 4g, 5g, 2, 3 mit SiX₂ = SiH₂ < SiHBr, SiHI < SiCl₂ < SiBr₂ von 2.33/2.37 Å/120.6° (R*H₂Si-SiH₂R* weist noch den normalen SiSi-Abstand auf) bis 2.42/2.46 Å/130.2° (vgl. Tabelle 2), was auf eine Zunahme des Raumbedarfs von X in Richtung H < Cl < Br, I weist (die SiR*Abstände sind jeweils um 0.02-0.04 Å größer als die SiSi-Abstände). Der Befund, daß im methylgruppenhaltigen 6 die Br-Atome ihre Plätze ohne Änderung der Verbindungsstruktur mit den Me-Gruppen vertauschen können, spricht für vergleichbaren Platzbedarf beider Gruppen, der Sachverhalt, daß die SiSi- und SiR*-Abstände beim Übergang 6a/ 6t → 9t, d.h. von einer methyl- zur phenylgruppenhaltigen Verbindung anwachsen, weist auf steigenden Platzbedarf in Richtung Me < Ph.

Besonderheiten zeigen die phenylgruppenhaltigen Verbindungen 7–10 (vgl. Tabelle 2). So verändert die Substitution einer X-Gruppe in R*PhXSi–SiXPhR* durch eine andere Gruppe X' die Verbindungsstruktur nur unwesentlich (vgl. Übergänge $7g \rightarrow 8g$ bzw. $9t \rightarrow$ 10t), während die Substitution beider X-Gruppen stärker ins Gewicht fällt (vgl. Übergang $7g \rightarrow 9t$ bzw. $7g \rightarrow 10t$). Da die Abstände SiSi und SiR* sowie die Winkel SiSiSi in *gauche*-R*PhClSi–SiHPhR* (8g) kleiner als in *trans*-R*PhClSi–SiHPhR* (8t) sind, weisen die *gauche*-Formen von R*X'XSi–SiXX'R* wohl allgemein geringere sterische Spannungen als die *trans*-Formen auf. Ganz in diesem Sinne bilden sich bei der Bromierung und Iodierung von 1 ausschließlich 4g und 5g; auch führt die Synthese von R*PhClSi–SiHPhR* aus R*PhSiHCl und NaR* in THF bevorzugt zum gauche-Diastereomeren 8g. Interessanterweise wird jedoch 'gespannteres' (energiereicheres) 8t rascher von LiAlH₄ hydriert als 8g, was damit zusammenhängen kann, daß das Si-Substitutionszentrum von 8t dem Nucleophil H⁻ auf der dem Nucleofug Cl⁻ abgewandten Seite mehr Platz bietet als das von 8g (vgl. Abb. 4c und 5c). Der Sachverhalt ließe sich auch damit erklären, daß die Substitutionsaktivierungsenergie für energiereicheres 8t kleiner als die von 8g sein muß, sofern den Substitutionsübergangsstufen vergleichbarer Energieinhalt zukommt.

Die Substituenten R*, X, X nehmen an den beiden zentralen Si-Atomen der untersuchten Disupersilyldisilane eine gestaffelte Konformation zueinander ein, wobei die raumerfüllenderen Supersilylgruppen R* im Falle aller Verbindungen R*X2Si-SiX2R* mit vier gleichen oder räumlich vergleichbaren Gruppen X (1, 2, 3 oder 6t, 6g in Tabelle 2) sowie im Falle aller trans-konfigurierten Verbindungen R*XX'Si-SiX'XR* (6t, 8t, 9t, 10t) exakt *trans*-positioniert (SiSiSiSi-Winkel = 180°), im Falle aller gauche-konfigurierten Verbindungen R*XX'Si-SiX'XR* mit räumlich deutlich verschiedenen Gruppen X und X' nicht mehr exakt trans-positioniert sind (SiSi-SiSi-Winkel um 155°, vgl. Tabelle 2; bezüglich der Bedeutung von gauche- und trans- R*XX'Si-SiX'XR*, vgl. Section 1 und Tabelle 1). Die Ebenen der Ph-Gruppen in gauche-R*PhXSi-SiXPhR* verlaufen praktisch parallel (Winkel zwischen den Flächennormalen $= 4.6^{\circ}$ in R*PhClSi-SiHPhR*); in trans-R*PhXSi-SiXPhR* stehen sie näherungsweise senkrecht auf den SiSiSiSi-Ebenen (Winkel zwischen den Flächennormalen $= 92.3^{\circ}$ in R*PhClSi-SiHPhR*).

Abb. 5. (a) Struktur von *gauche*-R*PhClSi–SiHPhR* und R*PhHSi–SiHPhR* (kristallisiert aus dem aus R*PhClSi–SiHPhR* mit LiAlH₄ in THF bei 25°C gewonnenen Gemisch mit 58/42% der Verbindungen) im Kristall (monoklin, $P_{2_1/n}$; Cl-Position zu 42% durch H ersetzt; Operator K. Polborn) und verwendete Atomnumerierung (H-Atome unberücksichtigt). Ausgewählte Bindungslängen [Å] und -winkel [°] im Molekül mit Standardabweichungen: Si2–Si3 2.402(1), Si1–Si2/Si3–Si4 2.423(1)/2.417(1), Si2–Cl1 2.098(2), Si2–Cl3/Si3–Cl9 1.891(3)/1.894(3), Si1–C/Si4–C (Mittelwert) 1.941. Cl3–Si2–Cl1 102.6(1), Cl3–Si2–Si3 109.51(9), Cl3–Si2–Si1 114.74(9), Cl9–Si3–Si2 108.21(9), Cl9–Si3–Si4 114.9(1), Cl1–Si2–Si3 107.5(1), Cl1–Si2–Si1 100.47(6), Si3–Si2–Si1 119.88(5), Si2–Si3–Si4 121.09(5), C–Si1–Si/C–Si4–Si (Mittelwert) 107.4, C–Si1–C/C–Si4–C (Mittelwert) 111.5. Bezüglich der Torsionswinkel vgl. Abb. 5b. (b) Newman-Projektion von *gauche*-R*PhClSi–SiHPhR* (Cl-Position zu 42% durch H ersetzt). Vgl. auch Abb. 5a. (c) Raumerfüllungsmodell von *gauche*-R*PhClSi–SiHPhR*.

Abb. 6. (a) Struktur von R*PhClSi–SiClPhR* im Kristall (triklin, $P\overline{1}$; Operator H. Nöth) und verwendete Atomnumerierung (Punktsym- $\approx C_i$; H-Atome unberücksichtigt). metrie Analog ist R*PhBrSi-SiClPhR* im Kristall gebaut (monoklin, C2/c; Punktsymmetrie $\approx C_i$; Operator K. Polborn). Ausgewählte Bindungslängen [Å] und -winkel [°] im Molekül mit Standardabweichungen. Trans-R*PhClSi-SiClPhR*: Si1-Si2 2.470(1), Si2-Si2A 2.431(2), Cl1-Si2 2.117(2), Si2-C1 1.901(4), Si1-C (Mittelwert) 1.951. Si1-Si2-Si2A 125.10(7), C1-Si2-Si2A 108.2(1), C1-Si2-Si1 111.2(1), C11-Si2-C1 103.8(1), Cl1-Si2-Si1 103.95(6), Cl1-Si2-Si2A 102.06(6), C-Si1-Si2 (Mittelwert) 107.6, C-Sil-C (Mittelwert) 111.6(2). Bezüglich der Torsionswinkel vgl. Abb. 6b. Trans-R*PhBrSi-SiClPhR*: Si1-Si2 2.446(2), Si2-Si2A 2.434(2), Br1-Si2 2.282(6), Cl1A-Si2A 2.09(2), Si2-C13 1.895(4), Si1-C (Mittelwert) 1.947. Si1-Si2-Si2A 124.49(6), C13-Si2-Si2A 106.5(1), C13-Si2-Si1 112.4(1), Br1-Si2-C13/ Cl1A-Si2A-C13A 101.5(2)/106.1(5), Br1-Si2-Si1/Cl1A-Si2A-Si1A 103.4(2)/105.7(5), Br1-Si2-Si2A/Cl1A-Si2A-Si2 105.9(2)/99.5(4). Bezüglich der Torsionswinkel vgl. Abb. 6b. (b) Newman-Projektion des Moleküls trans-R*PhClSi-SiClPhR* (analog ist trans-R*PhBrSi-SiClPhR* gebaut: Torsionswinkel in Klammern). Vgl. auch Abb. 6a.

5. Experimenteller Teil

Alle Untersuchungen wurden unter strengem Ausschluß von Wasser und Sauerstoff durchgeführt. Zur Verfügung standen: Cl₂, Br₂, I₂, Na, Li, PCl₅, LiAlH₄, *N*-Bromsuccinimid, Me₂SO₄, Me₃SiOSO₂CF₃, C₁₀H₈. Nach Literaturvorschriften wurden synthetisiert: NaSi*t*-Bu₃ × 2THF [8], R*SiH₂Cl [2], R*MeSiHCl [2], R*PhSiHCl [2]. ÖV = Ölpumpenvakuum.

HBr wurde wie folgt bereitet: Zu Toluol (-78° C) wird Br₂ getropft. Im Zuge des Erwärmens wird HBr im ÖV in einen mit flüssigem N₂ gekühlten Kolben kondensiert. Die Lösungsmittel (Et₂O, THF, CCl₄, CH₂Cl₂, CHCl₃, Benzol, Pentan, Aceton) wurden vor Gebrauch getrocknet.

Für *NMR-Spektren* standen Multikerninstrumente zur Verfügung: Jeol FX-90Q (¹H/¹³C/²⁹Si: 89.55/22.49/ 17.75 MHz), Jeol GSX-270 (¹H/¹³C/²⁹Si: 270.17/67.94/ 53.67 MHz) und Jeol EX-400 (¹H/¹³C/²⁹Si: 399.78/100.54/79.43 MHz). Die ²⁹Si-NMR-Spektren wurden vorwiegend mit Hilfe eines INEPT-bzw. DEPT-Pulsprogramms mit empirisch optimierten Parametern für die Substituenten aufgenommen. Für *Massenspektren* diente ein Gerät Varian CH7. Die *Produkttrennungen* erfolgten mit einem HPLC-Gerät der Firma Waters (Säule 21.2 × 250 mm; Füllung Zorbax C18; Fluß 21 ml min⁻¹; Detektion UV bei 223 nm, Refraktrometrie).

5.1. Darstellung halogenfreier Disupersilyldisilane $R^*X_2Si-SiX_2R^*$ und von $R^*H_2Si-SiH_3$ (vgl. Tabelle 1)

5.1.1. 1,2-Disupersilyldisilan R*H₂Si-SiH₂R*

Man erwärmt 2.17 g (8.20 mmol) R*SiH₂Cl und 5.23 g (22.7 mmol) zerkleinertes Na in 50 ml Benzol, Mesitylen oder THF 16 h auf 65°C. Laut NMR ausschließlich Bildung von R*H₂Si-SiH₂R*. Nach Abfiltrieren ungelöster Anteile, Abkondensieren flüchtiger Anteile im ÖV und Umkristallisieren des Rückstands aus *t*-BuOMe erhält man 1.34 g (2.92 mmol; 71%) R*H₂Si-SiH₂R*. Farblose Kristalle, Schmp. 251-253°C. ¹H-NMR (C₆D₆, iTMS): $\delta = 1.234$ (s; 2Sit-Bu₃), 3.462 (s; 2SiH₂); (CDCl₃, iTMS): $\delta = 1.172$ (s; 2Sit-Bu₃), 3.082 (s; $2SiH_2$). ¹³C{¹H}-NMR (C₆D₆, iTMS): $^{29}Si\{^{1}H\}\text{-}NMR$ $\delta = 23.80/31.40$ $(6CMe_3/6CMe_3).$ $(C_6D_6, eTMS): \delta = -107.40 \ (2SiH_2; bei {}^1H-Kopplung:$ t mit ${}^{1}J_{\text{SiH}} = 171.7$ Hz), 16.30 (2Sit-Bu₃). IR (KBr): v = 2097, 2105 cm⁻¹(SiH). MS: m/z = 458 (M⁺; 1%), 401 (M⁺ – *t*-Bu; 33%). Analyse (C₂₄H₅₈Si₄, $M_r =$ 459.1): Ber. C, 62.79; H, 12.73. Gef. C, 62.04; H, 12.81%. Röntgenstrukturanalyse: Vgl. Abb. 1 (Kristalle aus Pentan). Anmerkung: R*H2Si-SiH2R* entsteht neben anderen Produkten bei der Reaktion von R*SiCl₃ mit Na in Bu₂O bei 140°C bzw. in Benzol bei 80°C [2].

5.1.2. Supersilyldisilan $R^*H_2Si-SiH_3$

Man setzt 0.008 g — R*I-haltiges — R*I₂Si–SiI₃ (vgl. Section 5.4.5) in 0.5 ml Et₂O 3 h bei 60°C mit 0.030 g (0.76 mmol) LiAlH₄ um, gibt zur Reaktionslösung bei Raumtemperatur etwas MeOH (zur Entfernung von überschüssigem LiAlH₄) und ersetzt Et₂O durch C₆D₆. Laut NMR quantitativer Umsatz zu R*H₂Si–SiH₃; R*I [8] wird unter diesen Bedingungen nicht hydriert. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in Pentan,

5.1.3. 1,2-Dimethyl-1,2-disupersilyldisilan R*MeHSi–SiHMeR*

Kopplung: t mit ${}^{1}J_{\text{SiH}} = 174.0$ Hz).

Man erwärmt 0.867 g (3.11 mmol) R*MeSiHCl und 1.0 g (43 mmol) zerkleinertes Na in 20 ml THF, Mesitylen oder Benzol 16 h auf 65°C. Laut NMR quantitative Bildung von R*MeHSi-SiHMeR*. Nach Abkondensieren aller flüchtigen Anteile, Lösen des Rückstands in Pentan, Abfiltrieren unlöslicher Anteile, Abkondensieren von Pentan und Umkristallisieren aus 20 ml Aceton erhält man 0.736 g (1.51 mmol, 97%) R*MeHSi–SiHMeR* in Form von zwei Diastereomeren im Molverhältnis 1.00:1.15 (Zuordnung zu gauche und trans aufgrund des Vergleichs von δ ⁽²⁹Si) mit δ ⁽²⁹Si) von R*PhHSi–SiHPhR*). Charakterisierung des farblosen Diastereomerengemischs: Schmp. 173–179°C; IR (KBr): v = 2086, 2058 cm⁻¹; MS: m/z = 486 (M⁺; 2%), 471 (M⁺ – Me; 2%), 429 $(M^+ - t-Bu; 100\%)$, 287 $(M^+ - Sit-Bu_3; 2\%)$. Analyse $(C_{26}H_{62}Si_4, M_r = 487.1)$: Ber. C, 64.11; H, 12.83. Gef. C, 63.19; H, 12.80%. Gauche-R*MeHSi–SiHMeR*: ¹H-NMR (C₆D₆, iTMS): $\delta = 0.555$ (pseudo-d; M-Teil eines AA'M₃M'₃-Spinsystems; ${}^{3}J_{HH} = 5.2$ Hz; 2SiMe), 1.247 (s; 2Sit-Bu₃), 4.009 (pseudo-q; A-Teil eines AA'M₃M'₃-Spinsystems; ${}^{3}J_{HH} = 5.2$ Hz; 2SiH). ${}^{13}C{}^{1}H$ -NMR $(C_6D_6, \text{ iTMS}): \delta = -6.70 \text{ (2SiMe)}, 24.06/31.79$ $(6CMe_3/6CMe_3)$. ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta =$ - 70.82 (2SiH; bei ¹H-Kopplung; d von m; X-Teil eines XAA'M₃M'₃-Spinsystems; ${}^{1}J_{\text{SiH}} = 159.1$ Hz), 16.66 *Trans*-R*MeHSi–SiHMeR*: $(2Sit-Bu_3).$ ¹H-NMR (C₆D₆, iTMS): $\delta = 0.694$ (d von d; M-Teil eines AA'M₃M'₃-Spinsystems; ${}^{3}J_{HH} = 5.3$; ${}^{4}J_{HH} = 0.2$ Hz; 2SiMe), 1.241 (s; 2 Sit-Bu₃), 3.883 (d von q von q; A-Teil eines AA'M₃M'₃-Spinsystems; ${}^{3}J_{HH(Si)} = 4.0;$ ${}^{3}J_{\text{HH(C)}} = 5.3; {}^{4}J_{\text{HH(C)}} = 0.2 \text{ Hz; } 2\text{SiH}. {}^{13}\text{C}\{{}^{1}\text{H}\}\text{-NMR}$ $(C_6D_6, \text{ iTMS}): \delta = -1.77$ (2SiMe), 24.16/31.83 $(6CMe_3/6CMe_3)$. ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta =$ - 66.15 (2SiH; bei ¹H-Kopplung: d von q; X-Teil eines XAA'M₃M'₃-Spinsystems; ${}^{1}J_{SiH} = 168.1$; ${}^{2}J_{SiH} = 4.6$ Hz), 14.31 (2Sit-Bu₃).

5.1.4. 1,2-Diphenyl-1,2-disupersilyldisilan R*PhHSi–SiHPhR*

(i) Man setzt 0.076 g (0.12 mmol) Diastereomerengemisch R*PhClSi–SiHPhR* (vgl. Section 5.2.4 und Tabelle 2; 8g:8t = 2.7:1) in 10 ml THF 12 h bei

Raumtemperatur mit 0.011 g (0.28 mmol) LiAlH₄ um. Laut NMR quantitativer Umsatz von Eduktdiastereomer 8t zu Produktdiastereomer R*PhHSi-SiHPhR* (7g), kein Umsatz von Eduktdiastereomer 8g. Nach Zugabe von Methanol zur Reaktionslösung (Zersetzung überschüssigen Alanats), Abkondensieren aller flüchtigen Anteile im ÖV, Lösen des Rückstands in Pentan, Abfiltrieren unlöslicher Anteile, Abkondensieren des Pentans und Lösen des Gemischs in Benzol erhält man im Laufe von 14 Tagen Mischkristalle aus Eduktdiastereomer 8g und Produktdiastereomer 7g im Molverhältnis 1.00:0.74. Identifizierung: Vgl. unten. (ii) Man setzt wie oben geschildert um, aber 2.5 h bei 120°C. Laut NMR quantitativer Umsatz von 8g und 8t (Molverhältnis 1:2.7) zu 7t und 7g (Molverhältnis 2.7:1). Aufarbeitung wie oben geschildert. Nach Abkondensieren des Pentans verbleiben 0.109 g (0.178 mmol; 87%) R*PhHSi–SiHPhR* als Diastereomerengemisch. Charakterisierung: Schmp. > 400°C; IR (KBr): v = 2090, 2084 cm⁻¹ (SiH); MS: m/z = 610 (M⁺; 6%), 553 (M⁺ – t-Bu; 100%), 411 (M⁺ – Sit-Bu₃; 95%). Analyse ($C_{36}H_{66}Si_4$, $M_r = 611.3$): Ber. C, 70.74; H, 10.88. Gef. C, 71.55; H, 11.52%. Gauche-R*PhHSi–SiHPhR* (7g): ¹H-NMR (C₆D₆, iTMS): δ = 1.154 (s; 2Sit-Bu₃), 4.696 (s; 2SiH), 7.80–7.89 (m; 2SiPh). ¹³C{¹H}-NMR (CDCl₃, iTMS): $\delta = 23.92/31.33$ (6CMe₃/6CMe₃), 127.2/128.3/135.7/138.8 (m-/p-/i-/o-C von 2 Ph; Signale für m-/o-C breit wegen Rotationshemmung). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -59.23$ (2SiH; bei ¹H-Kopplung: t von d; X-Teil eines XAA'B₂B'₂C₂C'₂DD'-Spinsystems mit symmetriebed- ${}^{1}J_{\rm SiH} = 169.7;$ ingter Aufspaltungsvereinfachung: ${}^{3}J_{\text{SiH}} = 4.8$ Hz), 16.81 (2Sit-Bu₃). Röntgenstrukturanalyse: Vgl. Abb. 5 (Kristalle von 7g im Gemisch mit 8g aus Benzol). Trans-R*PhHSi–SiHPhR* (7t): ¹H-NMR (C₆D₆, iTMS): $\delta = 1.076$ (s; 2 Sit-Bu₃), 4.676 (s; 2 SiH) 7.10–7.89 (2SiPh). ${}^{13}C{}^{1}H{}-NMR$ (C₆D₆, iTMS): $\delta = 24.92/31.43$ (6 CMe₃/6CMe₃), 127.7/128.8/ 137.8/138.6 (m-/p-/i-/o-C von 2 Ph; Signale für m-/o-C breit wegen Rotationshemmung). ²⁹Si{¹H}-NMR $(C_6D_6, eTMS)$: $\delta = -52.34$ (2SiH; bei ¹H-Kopplung: d breit; X-Teil eines XAA'B₂B'₂C₂C'₂DD'-Spinsystems mit nicht auflösbaren Kopplungen XC und XD; ${}^{1}J_{SiH} =$ 167.4 Hz), 19.83 (2Sit-Bu₃). Anmerkungen: (1) 7g entsteht neben anderen Produkten auch bei der Umsetzung von R*PhSiCl₂ mit Na in Benzol bei 80°C sowie mit Li- und Na-Naphthalenid in DME bei -78° C [2]. (2) Bezüglich der Umsetzung von R*PhSiHCl mit Na in Benzol bei 65°C zu 7g und 7t (Molverhältnis 1.2:1), vgl. Ref. [2]. (3) 7g und 7t (Molverhältnis 1.7:1.0) entstehen im Zuge des Erwärmens einer auf - 78°C gekühlten Lösung von 0.21 mmol R*PhSiCl-SiHPhR* (gauche:trans = 2.7:1.0) und 0.43 mmol NaC₁₀H₈ in 3.5

ml THF (-78° C).

5.1.5. 1,2-Supersilyl-1-trimethylsilyldisilan R*(Me₃Si)HSi–SiH₂R*

Zu 0.03 g (0.05 mmol) R*BrHSi-SiH₂R* (vgl. Section 5.3.1) in 10 ml THF (-78° C) werden 0.11 mmol NaR* in 5 ml THF getropft. Nach Abkondensieren aller flüchtigen Anteile im ÖV bei Raumtemperatur, Kühlen des Rückstands mit flüssigem Stickstoff, Zugabe eines Tropfens Me₃SiCl in 0.5 ml [D₈]-Toluol und Erwärmen auf Raumtemperatur enthält das Reaktionsgemisch nach 12 h laut NMR neben R*Br [8] und Me₃SiCl das Disilan R*(Me₃Si)HSi-SiH₂R*, das nicht isoliert wurde. ¹H-NMR ($C_6D_5CD_3$, iTMS): $\delta = 0.401$ (s; SiMe₃), 1.233/ 1.251 (s/s; Sit-Bu₃/Sit-Bu₃), 2.966 (d von d; A-Teil eines AMN-Spinsystems: ${}^{3}J_{\rm HH} = 4.5/4.0$ Hz; SiH von SiH(SiMe₃)), 3.444 (d von d; M-Teil eines AMN-Spinsystems: ${}^{2}J_{HH} = 5.7$; ${}^{3}J_{HH} = 4.5$ Hz; SiH von SiH₂). 3,490 (d von d; *N*-Teil eines AMN-Spinsystems: ${}^{2}J_{HH} = 5.7$; ${}^{3}J_{\rm HH} = 4.0$ Hz; SiH von SiH₂). ${}^{13}C{}^{1}H$ -NMR $(C_6D_5CD_3, \text{ iTMS}): \delta = 2.99 \text{ (SiMe}_3), 24.06/31.89 \text{ (Sit-}$ Bu₃), 24.17/32.03 (Sit-Bu₃). 29 Si{ 1 H}-NMR (C₆D₅CD₃, eTMS): $\delta = -117.3$ (SiH; bei ¹H-Kopplung: d mit ${}^{1}J_{\text{SiH}} = 159.9 \text{ Hz}$), $-109.8 \text{ (SiH}_2\text{; bei }{}^{1}\text{H-Kopplung: t mit}$ ${}^{1}J_{\text{SiH}} = 164.2 \text{ Hz}$, $-7.46 \text{ (SiMe}_3)$, 22.56 (Sit-Bu₃), 26.72 $(Sit-Bu_3).$

5.2. Darstellung chlorhaltiger Disupersilyldisilane $R^*X_2Si-SiX_2R^*$ (vgl. Tabelle 1)

5.2.1. 1,1-Dichlor-, 1,2-Dichlor-,

1,1,2-Trichlor-1,2-disupersilyldisilane R*Cl₂Si-SiH₂R*, R*ClHSi-SiHClR*, R*Cl₂Si-SiHClR*

Zu 0.182 g (0.400 mmol) R*H₂Si-SiH₂R* (vgl. Section 5.1.1) in 20 ml CH₂Cl₂ (-10° C) werden im Dunkeln 2.51 mmol Cl₂ in 6.6 ml CCl₄ getropft. Nach 10 Min kondensiert man alle im ÖV flüchtigen Anteile bei -10° C ab und löst den Rückstand in C₆D₆. Laut NMR Bildung von 39% R*Cl₂Si-SiH₂R*, 29% R*ClHSi-SiHClR* und 32% R*Cl₂Si-SiHClR*, aber kein R*ClHSi-SiH₂R* und kein R*Cl₂Si–SiCl₂R*. Die Produkte konnten nicht von einander getrennt werden; ihre Charakterisierung erfolgte im Gemisch. R*Cl₂Si–SiHClR*: ¹H-NMR (C_6D_6 , iTMS): $\delta = 1.279/1.329$ (s/s; Sit-Bu₃/Sit-Bu₃), 5.542 (SiH). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -19.44$ (Si-HCl; bei ¹H-Kopplung: d mit ¹ $J_{SiH} = 180.0$ Hz), 27.03 (SiCl₂), 16.21/22.60 (Sit-Bu₃/Sit-Bu₃). R*Cl₂Si-SiH₂R*: ¹H-NMR (C₆D₆, iTMS): $\delta = 1.231/1.335$ (Sit-Bu₃/Sit-Bu₃), 3.830 (SiH₂). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta =$ -90.71 (SiH₂; bei ¹H-Kopplung: t mit ¹J_{SiH} = 168.4 Hz), ? (SiCl₂), 9.92/24.47 (Sit-Bu₃/Sit-Bu₃). R*ClHSi-SiHClR* (es entsteht nur eines von zwei möglichen Diastereomeren; es ist wohl wie R*BrHSi-SiHBrR* oder R*IHSi–SiHIR* gauche-konfiguriert): ¹H-NMR (C₆D₆, iTMS): $\delta = 1.266$ (s; 2 Sit-Bu₃), 5.46 (s; 2 SiHCl). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -18.33$ (2SiHCl; bei ¹H-Kopplung: d von d mit ¹ $J_{SiH} = 181.6$ und ² $J_{SiH} = 14.7$ Hz), 14.54 (2Sit-Bu₃).

5.2.2. Tetrachlor-1,2-disupersilyldisilan R*Cl₂Si-SiCl₂R*

Zu 0.160 g (0.350 mmol) R*H₂Si-SiH₂R* (vgl. Section 5.1.1) in 20 ml CH₂Cl₂ (0°C) werden im Dunkeln 1.48 mmol Cl₂ in 4 ml CCl₄ getropft. Laut NMR der auf Raumtemperatur erwärmten Lösung quantitative Bildung von R*Cl₂Si-SiCl₂R*. Nach Abkondensieren aller im ÖV flüchtigen Anteile verbleiben 0.19 g (0.32 mmol; 92%) R*Cl₂Si-SiCl₂R*. Farblose, in CCl₄, Pentan, Benzol schlecht lösliche Festsubstanz, Schmp. 295-299°C. ¹H-NMR (C₆D₆, iTMS): $\delta = 1.337$ (s; 2Sit-Bu₃). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 25.01/31.70$ (6CMe₃/ 6CMe₃). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = 20.18$ (2SiCl₂), 26.08 (2Sit-Bu₃). Analyse ($C_{24}H_{54}Cl_4Si_4$, $M_r =$ 596.9): Ber. C, 48.30; H, 9.12. Gef. C, 48.26; H, 9.20%. Röntgenstrukturanalyse: Vgl. Abb. 1 (farblose Platten aus Benzol). Anmerkung: Nach Zutropfen von 4.70 mmol NaR* in 8 ml THF zu 0.2 ml (1.16 mmol) Cl₃Si-SiCl₃ in 30 ml THF (-30° C) enthält die Lösung nach dem Erwärmen auf Raumtemperatur — laut NMR — an supersilylhaltigen Verbindungen hauptsächlich R*Cl und R*SiCl₃ (Molverhältnis ca 2:1), darüber hinaus vergleichsweise wenig R2SiCl2 und zwei unbekannte Produkte, aber nicht R*Cl₂Si-SiCl₂R* (gemeinsam mit Ch. M.M. Finger).

5.2.3. 1,2-Dichlor-1,2-dimethyl-1,2-disupersilyldisilan R*MeClSi–SiClMeR*

Man erwärmt 0.139 g (0.290 mmol) Diastereomerengemisch R*R*MeHSi-SiHMeR* (vgl. Section 5.1.3; trans:gauche = 1:1.15) und 0.153 g (0.730 mmol) PCl₅ in 20 ml CCl₄ 15 h auf 70°C. Laut NMR quantitative Bildung von trans- und gauche-R*MeClSi-SiClMeR* im Molverhältnis 1:1.15 (Zuordnung aufgrund der unveränderten Diastereomerenanteile). Nach Zugabe von 0.5 ml H₂O, dann NaHCO₃ zur Reaktionslösung (Hydrolyse von PCl₅, Neutralisation), Abkondensieren aller flüchtigen Anteile im ÖV, Lösen des Rückstands in 15 ml Pentan, Abfiltrieren ungelöster Anteile und Umkristallisieren aus 10 ml Aceton erhält man 0.147 g (0.260 mmol; 93%) R*MeClSi-SiClMeR*. Charakterisierung des farblosen Diastereomerengemischs: Schmp. 246–253°C; MS: m/z = 554/556/558 (M⁺; 1%), 539/541/543 (M⁺ – Me; 2%), 497/499/501 (M⁺ – *t*-Bu; 100%), 319/321/323 (M⁺ – Si*t*-Bu₃; 22%). Analyse $(C_{26}H_{60}Cl_2Si_4, M_r = 556.0)$: Ber. C, 56.17; H, 10.88. Gef. C, 55.31; H, 10.69%. Trans-R*MeClSi-SiClMeR* (6t): ¹H-NMR (C₆D₆, iTMS): $\delta = 0.976$ (s; 2SiMe), 1.301 (s; 2Sit-Bu₃). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 7.84$ $(2SiMe), 24.61/32.62 (6CMe_3/6CMe_3). {}^{29}Si{}^{1}H{}-NMR$ $(C_6D_6, eTMS): \delta = 14.88$ (2SiCl), 19.64 (2Sit-Bu₃). Gauche-R*MeClSi–SiClMeR* (6g): 1 H-NMR (C₆D₆, iTMS): $\delta = 0.975$ (s; 2SiMe), 1.297 (s; 2Sit-Bu₃). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 7.65$ (2SiMe), 24.53/ 32.62 (6*C*Me₃/6*C*Me₃). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = 12.59$ (2SiCl), 19.47 (2Sit-Bu₃).

5.2.4. 1-Chlor-1,2-diphenyl-1,2-disupersilyldisilan R*PhClSi–SiHPhR*

Zu 1.80 g (5.27 mmol) R*PhSiHCl in 30 ml THF $(-78^{\circ}C)$ werden 2.63 mmol NaR* in 5 ml THF getropft. Die auf Raumtemperatur erwärmte Lösung enthält dann - laut NMR - trans- und gauche-R*PhClSi-SiHPhR* im Molverhältnis 1:2.7 (Zuorddurch Röntgenstrukturanalyse; pro nung Mol R*PhHSi-SiHPhR* entsteht zusätzlich 1 Mol R*H [8]). Nach Abkondensieren aller flüchtigen Anteile (auch R*H) im Hochvakuum und Umkristallisieren des Rückstands aus 30 ml Aceton erhält man 1.50 g (2.32 mmol; 88%) R*PhClSi-SiHPhR*. Charakterisierung des farblosen Diastereomerengemischs: Schmp. 185-190°C; IR (KBr): v = 2084, 2069, 2054 cm⁻¹ (SiH); MS: m/z = 644/646 (M⁺; 2%), 629/631 (M⁺ – Me; 1%), 609 (M⁺ – Cl), 587/589 (M⁺ – t-Bu; 100%), 445/ 447 (M⁺ – Sit-Bu₃; 12%); Analyse (C₃₆H₆₅ClSi₄, $M_r =$ 645.7): Ber. C, 66.96; H, 10.15. Gef. C, 66.18; H, 10.24%. Trans-R*PhClSi–SiHPhR* (8t): ¹H-NMR $(C_6D_6, iTMS): \delta = 1.031$ (s; Sit-Bu₃), 1.118 (s; Sit-Bu₃), 4.891 (s; SiH), 7.10/7.81/8.16 (m/m/m; 2 Ph). ¹³C{¹H}-NMR (CDCl₃, iTMS): $\delta = 23.86/31.39$ (3CMe₃/ $3CMe_3$, 24.69/32.29 ($3CMe_3/3CMe_3$), 127.2/128.1/ 136.3/138.9 (m-p-i-V c von Ph), 127.2 + 127.5/128.6/135.4 + 135.5/139.8 (*m*-/*p*-/*o*-/*i*-C von Ph; z.T. wegen Rotationsbehinderung aufgespalten). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -53.22$ (SiH; bei ¹H-Kopplung: d mit ${}^{1}J_{\text{SiH}} = 163.7 \text{ Hz}$), 2.38 (SiCl), 15.94 (Sit-Bu₃), 23.16 (Sit-Bu₃). Röntgenstrukturanalyse: Vgl. Abb. 4 (Kristalle von 8t aus Benzol). Gauche-R*PhClSi-SiHPhR* (8g): ¹H-NMR (C₆D₆, iTMS): $\delta = 1.131$ (s; Sit-Bu₃), 1.194 (breit; Sit-Bu₃), 4.901 (s; SiH), 7.21/ 7.49/8.00 (m/m/m; 2 Ph). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 23.83/31.46$ (3*C*Me₃/3*C*Me₃), 24.96/31.51 (breit/breit; 3CMe₃/3CMe₃), 127.2/128.8/136.2/138.6 (m-p-i-i-C von Ph), 126.8 + 127.6/128.9/134.9 +136.3/140.4 (m-/p-/o-/i-C; z.T. wegen Rotationsbehinderung aufgespalten). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -53.84$ (SiH; bei ¹H-Kopplung: d mit ¹J_{SiH} = 168.0 Hz), 8.28 (SiCl), 17.48 (Sit-Bu₃), 24.02 (Sit-Bu₃). Röntgenstrukturanalyse: Vgl. Abb. 5 (Kristalle von 8g im Gemisch mit 7g aus Benzol). Anmerkungen: (1) Trans- und gauche-R*PhClSi-SiHPhR* bilden sich im 'Eintopfverfahren' durch Zutropfen von NaR* in THF zu PhSiHCl₂ in THF oder Pentan (-78° C) im Molverhältnis 1:2.7. (2) Setzt man PhSiHCl₂ in THF (-78° C) mit der doppeltmolaren Menge NaR* um, so verbleibt ein halbes Äquivalent NaR* unumgesetzt. (3) Bei der Hydrierung von trans/gauche-R*PhClSi-SiHPhR* mit LiAlH₄ in THF bei 25°C verbleibt quantitativ gauche-R*PhClSi-SiHPhR*; es bildet sich aus trans-R*PhClSi-SiHPhR* gauche-R*PhHSi-SiHPhR* (vgl. Section 5.1.4). (4) Bezüglich der Reaktion von 8g/8t mit NaC₁₀H₈ in THF vgl. Section 5.1.3.

5.2.5. 1,2-Dichlor-1,2-diphenyl-1,2-disupersilyldisilan R*PhClSi–SiClPhR*

Zu 0.783 g (1.21 mmol) Diastereomerengemisch R*PhClSi–SiHPhR* (vgl. Section 5.2.4; *trans:gauche* = 1:2.7) in 10 ml CCl₄ (-5° C) werden 1.30 mmol Cl₂ in 11 ml CCl₄ getropft. Laut NMR quantitative Bildung von trans- und gauche-R*PhClSi-SiClPhR* im Molverhältnis 1:2.7 (Zuordnung aufgrund der unveränderten Diastereomerenanteile und Röntgenstrukturanalyse). Nach Abkondensieren aller im OV flüchtigen Anteile und Umkristallisieren des Rückstands aus 15 ml Aceton erhält man 0.791 g (1.16 mmol, 98%) R*PhClSi–SiClPhR*. Charakterisierung des Diastereomerengemischs: Schmp. 290-310°C (Zers.); MS: m/z = 678/680/682 (M⁺; 1%), 663/665/667 $(M^+ - Me; 1\%), 621/623/625 (M^+ - t-Bu; 17\%), 479/$ 481/483 (M⁺ - Sit-Bu₃; 1%); Analyse (C₃₆H₆₄Cl₂Si₄, $M_{\rm r} = 680.2$): Ber. C, 63.57; H, 9.48. Gef. C, 62.91; H, 9.55%. Gauche-R*PhClSi-SiClPhR* (fast unlöslich in Benzol): ¹H-NMR (C₆D₆, iTMS): $\delta = 1.088$ (s; 2 Sit-Bu₃), 7.08–7.20/7.77–7.82/7.93–7.96 (*m*/*m*/*m*; *p*-/*o*-/*m*-2Ph). $^{13}C{^{1}H}-NMR$ $(C_6 D_6,$ Η von iTMS): $\delta = 24.88/31.51$ $(6CMe_3/6CMe_3),$ 127(breit)/129.1/ 136.0/136.9(breit) (m-p-i-o-C von 2Ph; Signalverbreiterung wegen Rotationshemmung). ²⁹Si{¹H}-NMR $(C_6D_6, eTMS): \delta = 3.53$ (2SiCl), 24.18 (2Sit-Bu₃). Trans-R*PhClSi–SiClPhR* (schwerlöslich in Benzol): ¹H-NMR (C₆D₆, iTMS): $\delta = 1.132$ (2Sit-Bu₃), 7.24– 7.26/7.74-7.77/8.25-8.28 (m/m/m; p-/o-/m-H von 2Ph). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 25.19/31.72$ $(6CMe_3/6CMe_3)$, 126.5(breit)/129.4/136.1/138.1(breit) (m-/p-/i-/o-C von 2Ph; Signalverbreiterung wegen Rotationshemmung). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta =$ 7.10 (2SiCl), 23.82 (2Sit-Bu₃). Röntgenstrukturanalyse: Vgl. Abb. 6 (Kristalle von 9t aus Toluol).

5.3. Darstellung bromhaltigerDisupersilyldisilane $R^*X_2Si-SiX_2R^*$ (vgl. Tabelle 1)

5.3.1. 1-Brom-1,2-disupersilyldisilan R*BrHSi-SiH₂R*

Zu 0.153 g (0.334 mmol) R*H₂Si-SiH₂R* (vgl. Section 5.1.1) in 10 ml CH₂Cl₂ (0°C) werden im Dunkeln 0.33 mmol Br2 in 5 ml CH2Cl2 getropft. Nach 30 Min enthält die Reaktionslösung - laut NMR - 5% $R^{H_2Si-SiH_2R^*}$ (Edukt), 88% $R^{BrHSi-SiH_2R^*}$ und 8% R*BrHSiO-SiHBrR* (vgl. Section 5.3.2). Nach Abkondensieren aller im ÖV flüchtigen Anteile und Lösen des Rückstands in 2.0 ml CH₂Cl₂ kristallisierten bei 0°C 90% R*BrHSi-SiH₂R* (56% Ausbeute) neben 10% R*BrHSi-SiHBrR* aus. Farbloser Feststoff, Schmp. 172–176°C. ¹H-NMR (C₆D₆, iTMS): $\delta =$ 1.235/1.287 (s/s; Sit-Bu₃ an SiH₂/Sit-Bu₃ an SiHBr), 3.763 (d von d; ${}^{3}J_{HH} = 8.4$; ${}^{2}J_{HH} = 4.5$ Hz; SiH von SiH₂), 3.955 (d mit ${}^{2}J_{HH} = 4.5$ Hz; SiH von SiH₂), 4.820 (d; ${}^{3}J_{HH} = 8.4$ Hz; SiH von SiHBr). ${}^{13}C{}^{1}H$ -NMR (C₆D₆, iTMS): $\delta = 23.63/31.41$ (3*C*Me₃/3*C*Me₃), 24.73/ 31.50 (3*C*Me₃/3*CMe*₃). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -98.26$ (SiH₂; bei ¹H-Kopplung: t von d mit ¹J_{SiH} = 171.3 und ²J_{SiH} = 7.8 Hz), -29.70 (SiHBr; bei ¹H-Kopplung: d von d mit ¹J_{SiH} = 185.5 Hz mit ²J_{SiH} = 10.3 Hz), 10.32 (Sit-Bu₃ an SiH₂), 20.02 (Sit-Bu₃ an SiHBr). IR (KBr): v = 2093, 2105 cm⁻¹ (SiH). MS: m/z = 479/481(M⁺ - t-Bu; 100%). Anmerkung: R*BrHSi-SiH₂R* reagiert mit NaR* zum Disilanid R*HNaSi-SiH₂R*, das sich zu R*H₂Si-SiH₂R* (vgl. Section 5.1.1) protonieren und zu R*(Me₃Si)HSi-SiH₂R* (vgl. Section 5.1.5) silylieren läßt.

5.3.2. 1,2-Dibrom-1,2-disupersilyldisilan R*BrHSi–SiHBrR*

Zu 0.694 g (1.51 mmol) $R^{H_2}Si-SiH_2R^{*}$ (vgl. Section 5.1.1) in 25 ml CH₂Cl₂ (0°C) werden im Dunkeln 3.02 mmol Br₂ in 10 ml CH₂Cl₂ getropft. Laut NMR nach 30 Min Bildung von 86% R*BrHSi-SiHBrR* und 14% R*Br₂Si-SiHBrR* (vgl. Section 5.3.4). Nach Abkondensieren aller im ÖV flüchtigen Anteile und Lösen des Rückstands in 10 ml CH₂Cl₂ kristallisieren bei -25° C 0.455 g (0.738 mmol; 49%) reines R*BrHSi-SiHBrR*. Es bildet sich nur eines von zwei möglichen Diastereomeren, nämlich das bzgl. H/H bzw. Br/Br gauche-konfigurierte. Farblose Kristalle, Schmp. 178–180°C. ¹H-NMR (C₆D₆, iTMS): $\delta = 1.278$ (s; 2Sit-Bu₃), 5.026 (s; 2SiHBr). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 24.77/31.70$ (6CMe₃/ $6CMe_3$). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -31.61$ (2SiHBr; bei ¹H-Kopplung: d von d mit ¹ $J_{SiH} = 180.8$ und ${}^{2}J_{\text{SiH}} = 14.3$ Hz), 14.52 (2Sit-Bu₃). IR (KBr): v = 2108cm⁻¹ (SiH). MS: m/z = 614/616/618 (M⁺; 3%), 557/559/ 561 (M⁺ – *t*-Bu; 100%). Analyse (C₂₄H₅₆Br₂Si₄, $M_r =$ 616.9): Ber. C, 46.73; H, 9.15. Gef. C, 46.34; H, 8.97%. Röntgenstrukturanalyse: Vgl. Abb. 2 (Kristalle aus $CH_2Cl_2).$

5.3.3. 1,1-Dibrom-1,2-disupersilyldisilan R*Br₂Si-SiH₂R*

Im Zuge des 2 stündigen Umsatzes von 0.040 g (0.087 mmol) $R^{*}H_{2}Si-SiH_{2}R^{*}$ (vgl. Section 5.1.1) mit 0.031 g (0.17 mmol) N-Bromsuccinimid in 10 ml CH₂Cl₂ beim Raumtemperatur entstehen — laut NMR — 3% R*BrHSi-SiH₂R* (vgl. Section 5.3.1) 14% R*Br₂Si-SiH₂R*, 66% R*BrHSi–SiHBrR* (vgl. Section 5.3.2) und 17% R*Br₂Si–SiHBrR* (vgl. Section 5.3.4). Die Charakterisierung von R*Br₂Si-SiH₂R* erfolgte im Gemisch mit den anderen Produkten. ¹H-NMR (C₆D₆, iTMS): $\delta =$ 1.248/1.367 (s/s; Sit-Bu₃/Sit-Bu₃), 4.173 (s; SiH₂). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 23.55/31.63$ (3CMe₃/ $3CMe_3$, 25.80/32.70 ($3CMe_3/3CMe_3$) ²⁹Si{¹H}-NMR $(C_6D_6, eTMS)$: $\delta = -86.9 (SiH_2; bei {}^1H-Kopplung: t mit)$ ${}^{1}J_{\text{SiH}} = 168.4 \text{ Hz}$, 7.95 (SiBr₂), 9.54/25.36 (Sit-Bu₃/Sit-Bu₃). Anmerkungen: (1) Die 20stündige Reaktion von 0.06 mmol R*H2Si-SiH2R* mit 10 ml CHBr3 bei NMR — 42% Raumtemperatur ergibt — laut $R^{H}_{2}Si-SiH_{2}R^{*}$ (Edukt), 43% $R^{B}rHSi-SiH_{2}R^{*}$, 7% R*Br₂Si–SiH₂R*, 8% R*BrHSi–SiHBrR*. (2) Nach Zugabe von 0.2 mmol NaR* in 0.4 ml THF zu 0.10 mmol R*Br₂Si–SiHBrR* (vgl. Section 5.3.4) in 50 ml THF (-78° C), Aufkondensieren von HBr (Überschuß) und Erwärmen des Reaktionsgemischs auf Raumtemperatur läßt sich — laut NMR — die Bildung von 80% R*BrHSi–SiHBrR* neben 10% R*Br₂Si–SiH₂R* und 10% R*BrHSi–SiH₂R* nachweisen.

5.3.4. Tribrom-1,2-disupersilyldisilan R*Br₂Si-SiHBrR*

 $Zu 0.420 g (0.540 \text{ mmol}) R^* Br_2 Si - Si Br_2 R^* (vgl. Section$ 5.3.5) in 90 ml THF (-78°C) werden 0.90 mmol NaR* in 10 ml THF getropft, dann - nach Kühlung der Mischung mit flüssigem Stickstoff — HBr (Überschuß) zukondensiert. Von der auf Raumtemperatur erwärmten Reaktionslösung kondensiert man alle im ÖV flüchtigen Anteile ab und extrahiert den Rückstand mit 5.0 ml Pentan (es verbleibt ein rötlicher Schleim). Nach Abkondensieren des Extraktpentans und Umkristallisieren des Rückstands aus 5 ml t-BuOMe erhält man 0.237 g (0.340 mmol; 63%) R*Br₂Si–SiHBrR*. Farblose Festsubstanz, Zers. ab 200°C. ¹H-NMR (C_6D_6 , iTMS): $\delta = 1.308/1.363$ (s/s; Sit-Bu₃/Sit-Bu₃), 5.101 (s; SiHBr). ¹³C{¹H}-NMR $(C_6D_6, iTMS): \delta = 24.61/31.78 ((3CMe_3/3CMe_3 an SiH-$ BrR*), 25.79/31.82 ($3CMe_3/3CMe_3$ an SiBr₂R*). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -32.04$ (SiHBr; bei ¹H-Kopplung: d mit ¹ $J_{SiH} = 177.7$ Hz), 7.70 (SiBr₂), 17.20 (Sit-Bu₃ an SiHBr), 24.43 (Sit-Bu₃ an SiBr₂). IR(KBr): $v = 2104 \text{ cm}^{-1}$ (SiH). Anmerkung: Die Reaktion von 0.30 mmol Br₂ mit 0.10 mmol R*H₂Si-SiH₂R* (vgl. Section 5.1.1) bzw. 0.30 mmol R*BrHSi-SiHBrR* (vgl. Section 5.3.2) in CH₂Cl₂ führt nach sechsstündiger Reaktion bei Raumtemperatur im Dunkeln — laut NMR — zu R*BrHSi–SiHBrR* (Produkt im ersten, Edukt im letzten Falle), R*Br₂Si–SiHBrR* und R*Br₂Si–SiBr₂R* (vgl. Section 5.3.5) im Molverhältnis ca. 3:5:2. Das Gemisch ließ sich durch HPLC unter analytischen Bedingungen in 80% MeOH-20% t-BuOMe trennen: Retentionszeiten 16 Min (30% R*BrHSi-SiHBrR*; gauche-Diastereomer), 19 Min (50% R*Br₂Si-SiHBrR*), 26 Min (20% R*Br₂Si-SiBr₂R*).

5.3.5. Tetrabrom-1,2-disupersilyldisilan R*Br₂Si-SiBr₂R*

Zu 0.300 g (0.653 mmol) R*H₂Si–SiH₂R* (vgl. Section 5.1.1) in 25 ml Pentan (0°C) werden im Dunkeln 0.3 ml (5.8 mmol) Br₂ getropft. Laut NMR der auf Raumtemperatur erwärmten Lösung quantitative Bildung von R*Br₂Si–SiBr₂R*. Nach Abkondensieren aller im ÖV flüchtigen Anteile verbleiben 0.506 g (0.653 mmol; 100%) R*Br₂Si–SiBr₂R*. Farbloser Feststoff, Schmp. 268– 271°C. Analyse (C₂₄H₅₄Br₄Si₄, $M_r = 774.7$): Ber. C, 37.21; H, 7.03. Gef. C, 37.19; H, 7.15%. ¹H-NMR (C₆D₆, iTMS): $\delta = 1.403$ (s; 2Sit-Bu₃). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 26.03/32.25$ (6CMe₃/6CMe₃). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -0.29$ (2SiBr₂), 30.98 (2Sit-Bu₃). MS: m/z = 770/772/774/776 (M⁺; 1%), 713/715/717/719 (M⁺ – t-Bu; 5%), 199 (Sit- Bu₃⁺; 100%). Röntgenstrukturanalyse: Vgl. Abb. 1 (Kristalle aus THF). Anmerkung: R*Br₂Si–SiBr₂R* reagiert mit NaR* zum Disilanid R*Br₂Si–SiBrNaR*, das sich bei tiefen Temperaturen zu R*Br₂Si–SiHBrR* (vgl. Section 5.3.4) protonieren und mit Me₂SO₄ zu R*Br₂Si–SiBrMeR* (vgl. Section 5.3.7) methylieren läßt.

5.3.6. 1-Brom-1,2-dimethyl-1,2-disupersilyldisilan R*MeBrSi–SiHMeR*

Zu 0.059 g (0.12 mmol) R*MeHSi-SiHMeR* (vgl. Section 5.1.3; Diastereomerengemisch; *trans:gauche* = 1:1.15) in 10 ml CH_2Cl_2 (-25°C) werden im Dunkeln 0.019 g (0.12 mmol) Br₂ in 5 ml CH₂Cl₂ getropft. Nach Abkondensieren aller bei -25°C im ÖV flüchtigen Anteile und Lösen des Rückstands in C_6D_6 bei Raumtemperatur enthält die Benzollösung laut NMR R*MeBrSi-SiHMeR* [trans:gauche (bezüglich der Me-Stellung) ca. 1:1.2] sowie R*MeHSi–SiHMeR* (ausschließlich trans) und R*MeBrSi–SiBrMeR* (trans:gauche ca. 1:1.2). Die Charakterisierung von trans- und gauche-R*MeBrSi-SiHMeR* (Zuordnung der Diasteremeren aufgrund der Diastereomerenanteile) erfolgte im Verbindungsgemisch: Farbloser Festsubstanz; MS: m/z = 564/566 (M⁺; 1%), 547/551 (M⁺ -Me; 2%), 507/509 (M⁺ – *t*-Bu; 100%), 365/367 $(M^+ - \text{Sit-Bu}_3; 70\%);$ IR (KBr): $v = 2089 \text{ cm}^{-1}$ (SiH). *Trans*-R*MeBrSi–SiHMeR*: ¹H-NMR (C_6D_6 , iTMS): $\delta = 1.269/1.300$ (s/s; Sit-Bu₃/Sit-Bu₃), 0.863 (d; ³J_{HH} = 4.8 Hz; SiMe), 1.160 (s; SiMe), 4.158 (q, ${}^{3}J_{HH} = 4.8$ Hz; SiH). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = -3.54/9.61$ (SiMe/SiMe), 24.18/25.21 (3CMe₃/3CMe₃), 31.86/32.04 $(3CMe_3/3CMe_3)$. ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta =$ -62.70 (SiH; bei ¹H-Kopplung: d mit ¹J_{SiH} = 175.2 Hz), 9.84 (SiBr), 11.19/21.19 (Sit-Bu₃/Sit-Bu₃). Gauche-R*MeBrSi–SiHMeR*: ¹H-NMR (C₆D₆, iTMS): $\delta =$ 1.211/1.308 (s/s; Sit-Bu₃/Sit-Bu₃), 0.564 (d; ³J_{HH} = 5.0 Hz; SiMe), 1.157 (s; SiMe), 4.263 (q, ${}^{3}J_{HH} = 5.0$ Hz; SiH). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = -3.78/6.12$ (SiMe/SiMe), 23.88/25.20 (3CMe₃/3CMe₃), 31.81/32.02 $(3CMe_3/3CMe_3)$. ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta =$ -65.85 (SiH; bei ¹H-Kopplung: d mit ¹J_{SiH} = 167.6 Hz), 6.31 (SiBr), 10.89/20.51 (Sit-Bu₃/Sit-Bu₃).

5.3.7. 1,2-Dibrom-1,2-dimethyl-1,2-disupersilyldisilan R*MeBrSi–SiBrMeR*

Zu 0.785 g (1.61 mmol) Diastereomerengemisch R*MeHSi–SiHMeR* (vgl. Section 5.1.3; *trans:* gauche = 1:1.15) in 10 ml Pentan werden 0.523 g (3.27 mmol) Br₂ in 2 ml Pentan getropft. Laut NMR quantitative Bildung von *trans-* und gauche-R*MeBrSi–SiBrMeR* im Molverhältnis 1:1.15 (Zuordnung aufgrund der unveränderten Diastereomerenanteile). Nach Abkondensieren aller flüchtigen Anteile im ÖV und

Umkristallisieren aus 20 ml Aceton erhält man 1.02 g (1.59 mmol; 98%) R*MeBrSi-SiBrMeR* Charakterisierung des farblosen Diastereomerengemischs: Schmp. 255–259°C; MS: m/z = 642/644/646 (M⁺; 1%), 627/ 629/631 (M⁺ – Me; 2%), 585/587/589 (M⁺ – *t*-Bu; 100%), 443/445/447 (M⁺ – Sit-Bu₃; 2%); Analyse $(C_{26}H_{60}Br_2Si_4, M_r = 644.9)$: Ber. C, 48.42; H, 9.38. Gef. C, 48.38; H, 9.31%. Trans-R*MeBrSi-SiBrMeR*: 1H-NMR (C₆D₆, iTMS): $\delta = 1.217$ (s; 2SiMe), 1.323 (s; 2Sit-Bu₃). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 7.74$ (2SiMe), 25.25/32.30 (6CMe₃/6CMe₃). ²⁹Si{¹H}-NMR $(C_6D_6, eTMS): \delta = 4.64$ (2SiBr), 20.82 (2Sit-Bu₃). ¹H-NMR Gauche-R*MeBrSi–SiBrMeR*: $(C_6 D_6,$ iTMS): $\delta = 1.131$ (s; 2SiMe), 1.313 (s; 2Sit-Bu₃). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 7.12$ (2SiMe), 25.15/ 32.24 (6 $CMe_3/6CMe_3$). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = 2.11$ (2SiBr), 19.97 (2Sit-Bu₃). Röntgenstrukturanalyse: Vgl. Abb. 3 (farblose Plättchen des Diastereomerengemischs aus Benzol).

5.3.8. 1,2,2-Tribrom-1-methyl-1,2-disupersilyldisilan R*MeBrSi-SiBr₂R*

Zu 0.636 g (0.821 mmol) R*Br₂Si-SiBr₂R* (vgl. Section 5.3.5) in 1.00 ml THF (-78° C) werden 1.65 mmol NaR* in 3 ml THF getropft. Nach Zutropfen von 0.95 ml (10 mmol) Me₂SO₄, langsamem Erwärmen des Reaktionsgemischs auf Raumtemperatur, Abziehen aller flüchtigen Anteile im Hochvakuum, Lösen des Rückstands in Pentan, Abfiltrieren unlöslicher Anteile und Abkondensieren des Pentans verbleiben 0.533 g (0.751 mmol; 91%) R*MeBrSi-SiBr₂R*. Farblose Festsubstanz, Schmp. 265–268°C (Zers.) ¹H-NMR (C₆D₆, iTMS): $\delta = 1.345/1.377$ (s/s; Sit-Bu₃/Sit-Bu₃), 1.294 (s; SiMe). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 7.29$ (SiMe), 25.09/31.97 (3CMe₃/3CMe₃), 25.68/32.19 (3CMe₃/ $3CMe_3$). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = 9.38$ (SiMe), ? (SiBr₂), 24.38/25.15 (Sit-Bu₃/Sit-Bu₃). Analyse $(C_{25}H_{57}Br_{3}Si_{4}, M_{r} = 709.8)$: Ber. C, 42.30; H, 8.09. Gef. C, 40.22; H, 8.25%.

5.3.9. 1-Brom-1,2-diphenyl-1,2-disupersilyldisilan R*PhBrSi–SiHPhR*

Trans-R*PhSi=SiPhR* (0.072 g, 0.12 mmol) [4] in 0.4 ml C₆D₆ werden in einer HBr-Atmosphäre geschüttelt. Laut NMR quantitative Bildung von R*PhBrSi–SiHPhR*. Nach Abkondensieren aller flüchtigen Anteile im ÖV verbleiben 0.079 g (0.11 mmol, 97%) R*PhBrSi–SiHPhR* in Form eines von zwei möglichen Diastereomeren (gemäß ¹H-NMR der *gauche*-Form von R*PhClSi–SiHPhR* entsprechend). Farblose Festsubstanz, Schmp. 228–229°C. ¹H-NMR (C₆D₆, iTMS): $\delta = 1.130$ (s; Sit-Bu₃ an SiH), 1.203 (breit; Sit-Bu₃ an SiBr), 4.952 (s; SiH), 7.03–8.11 (Multipletts; CH von 2 Ph). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 25.0$ (breit)

+23.90/31.5 (breit) + 31.66 (3*C*Me₃/3*C*Me

5.3.10. 1,2-Dibrom-1,2-diphenyl-1,2-disupersilyldisilan R*PhBrSi–SiBrPhR*

Zu 0.139 g (0.230 mmol) trans-R*PhSi=SiPhR* [3] in 10 ml Pentan (-5° C) werden 0.018 g (0.23 mmol) Br₂ in 3 ml Pentan getropft. Laut NMR quantitative Bildung von R*PhBrSi-SiBrPhR*. Nach Abkondensieren aller flüchtigen Anteile im ÖV und Waschen des Rückstands mit Aceton verbleiben 0.173 g (0.220 mmol; 99%) R*PhBrSi-SiBrPhR* in Form eines von zwei möglichen Diastereomeren (gauche-konfiguriert, s. Anmerkung). Farblose Festsubstanz, Schmp. 270-271°C. ¹H-NMR (C₆D₆, iTMS): $\delta = 1.132$ (s; 2 Sit-Bu₃), 7.18– 740/7.90-7.93/8.39-842 (m/m/m; o-, p-, m-H von 2) Ph; Signalverbreiterung wegen Rotationshemmung). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 24.79/31.53$ (6CMe₃/ $6CMe_3$, 128.6(breit)/129.4/134.9/136.4(breit) (m-/p-/i-/ o-C von 2 Ph; Signalverbreiterung wegen Rotationshemmung). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -3.24$ (2SiBr), 25.82 (2Sit-Bu₃). MS: m/z = 766/768/770 (M⁺; 1%), 751/753/755 (M⁺ – Me; 1%), 709/711/713 (M⁺ – *t*-Bu; 22%), 689/691 (M⁺ – Br; 1%), 567/569/571 (M⁺ -Sit-Bu₃; 2%). Analyse (C₄₈H₆₄Br₂Si₄, $M_r = 769.1$): Ber. C, 56.22; H, 8.39. Gef. C, 55.63; H, 8.48%. Anmerkung: Gauche-R*PhHSi-SiHPhR* (vgl. Section 5.1.4) reagiert in CCl₄ bei 0°C mit Br₂ glatt zu einem der beiden möglichen Diastereomeren von R*PhBrSi-SiBrPhR*, bei dem es sich um das gauchekonfigurierte handeln muß (vgl. Chlorierung von R*PhHSi-SiHPhR*). Laut NMR hat es die gleiche Konfiguration wie das aus R*PhSi=SiPhR* gewonnene.

5.3.11. 2-Brom-1,2-disupersilyl-1-trimethylsilyldisilan R*(Me₃Si)HSi–SiHBrR*

Zu 0.028 g (0.045 mmol) R*BrHSi-SiHBrR* (vgl. Section 5.3.2) in 10 ml THF (-100° C) tropft man 0.068 mmol NaR* in 5 ml THF. Zur tiefvioletten festen Reaktionslösung $(-198^{\circ}C)$ wird 0.1 mmol Me₃SiOSO₂CF₃ kondensiert. Man erwärmt auf Raumtemperatur (ab -100° C Bildung einer farblosen Lösung), kondensiert alle im ÖV flüchtigen Anteile ab und löst den Rückstand in C₆D₆. Laut ¹H-NMR bilden sich 4% R*H₂Si-SiH₂R* (vgl. Section 5.1.1), 30%

R*BrHSi-SiH₂R* (vgl. Section 5.3.1; Protolyse von R*NaHSi–SiHBrR*), 6% R*(Me₃Si)HSi–SiH₂R* (vgl. Section 5.1.5) und 60% R*(Me₃Si)HSi-SiHBrR* (2 Diastereomere im Molverhältnis ca. 1:1). Die Charakterisierung der Diastereomeren a (wohl gauche) und b (wohl trans; Zuordnung aufgrund der ²⁹Si-NMR-Signale) erfolgte im Substanzgemisch: ¹H-NMR (C₆D₆, iTMS; \mathbf{b}/\mathbf{a}): $\delta = 0.452/0.508$ (s/s; SiMe₃/SiMe₃), 1.261/ 1.318 (s/s; 2Sit-Bu₃/2Sit-Bu₃), verdeckt (SiH/SiH), 5.037/5.220 (s/s; jeweils breit; SiHBr/SiHBr). 29 Si{ 1 H}-NMR (C₆D₆, eTMS, **b**/**a**): $\delta = -106.50$ sowie -105.75 (SiH sowie SiH; bei ¹H-Kopplung: d mit ${}^{1}J_{\text{SiH}} = 156.9 \text{ Hz}$ sowie d mit ${}^{1}J_{\text{SiH}} = 153.9 \text{ Hz}$), -28.73sowie – 24.45 (SiHBr sowie SiHBr; bei ¹H-Kopplung: d von d mit ${}^{1}J = 169.7$ und ${}^{2}J_{\text{SiH}} = 5.2$ Hz sowie d von d mit ${}^{1}J_{\text{SiH}} = 176.0$ und ${}^{2}J_{\text{SiH}} = 5.3$ Hz), 16.84/16.86 (Sit-Bu₃/Sit-Bu₃ an SiH), 27.88/30.64 (Sit-Bu₃/Sit-Bu₃ an SiHBr).

5.3.12. 2,2-Dibrom-1-methoxy-1,2-disupersilyldisilan R*(MeO)HSi-SiBr₂R* und 1,2-Dimethoxy-1,2-disupersilyldisilan R*(MeO)HSi-SiH(OMe)R*

Zu 0.136 g R*Br₂Si-SiBr₂R* (verunreinigt mit R*BrHSi-SiBr₂R*, vgl. Sections 5.3.4 und 5.3.5) in 25 ml THF (-100° C) tropft man 0.170 mmol NaR* in 5 ml THF. Nach Zugabe von 0.5 ml MeOH (Entfärbung der gelben Lösung), Erwärmen auf Raumtemperatur, Abkondensieren aller im ÖV flüchtigen Anteile und Lösen des Rückstands in C₆D₆ enthält die Lösung laut NMR neben R*Br [8], R*H [8] und R*SiH(OMe)₂ [2] die Disilane R*(MeO)HSi-SiBr₂R* und R*(MeO)HSi-SiH(OMe)R* im Molverhältnis 6:1. R*(MeO)HSi-SiBr₂R*: ¹H-NMR (C₆D₆, iTMS): $\delta = 1.296/1.363$ (s/s; Sit-Bu₃ an SiH(OMe)/SiBr₂), 3.422 (s; OMe), 6.016 (s; SiH). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 23.74/31.71$ und 25.63/31.93 (je 3CMe₃/3CMe₃ von Sit-Bu₃ an Si-H(OMe) und SiBr₂), 56.85 (OMe). ${}^{29}Si{}^{1}H$ -NMR (C₆D₆, eTMS): $\delta = -0.56$ (SiH; bei ¹H-Kopplung: d von q mit ${}^{1}J_{\text{SiH}} = 168.2$ Hz und ${}^{3}J_{\text{SiH}} = 4.5$ Hz), 13.12 (SiBr₂), 13.24/20.75 (Sit-Bu₃/Sit-Bu₃).— R*(MeO)HSi-SiH(OMe)R* (nur ein Diastereomer): ¹H-NMR (C₆D₆, iTMS): $\delta = 1.291$ (s; 2Sit-Bu₃), 3.483 (s; 2OMe), 5.762 (s; 2SiH). ${}^{13}C{}^{1}H$ -NMR (C₆D₆, iTMS): $\delta = 23.73/$ 31.71 (6CMe₃/6CMe₃), 56.45 (2OMe). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -2.63$ (2SiH; bei ¹H-Kopplung: d von d von q mit ${}^{1}J_{SiH} = 170.8$, ${}^{2}J_{SiH} = 16.0$ und ${}^{3}J_{SiH} =$ 4.9 Hz), 11.37 (2Sit-Bu₃).

5.4. Darstellung von iodhaltigen Disupersilyldisilanen $R^*X_2Si-SiX_2R^*$ und von $R^*I_2Si-SiI_3$ (vgl. Tabelle 1)

5.4.1. Iod-1,2-disupersilyldisilan R*IHSi-SiH₂R* Man beläßt 0.080 g (0.174 mmol) R*H₂Si-SiH₂R*

(vgl. Section 5.1.1) und 0.088 g (0.348 mmol) I_2 in 0.5 ml CH₂Cl₂ 4 Tage bei Raumtemperatur. Laut NMR enthält die Lösung dann noch 1% Edukt, 79% R*IHSi-SiH₂R* und 20% R*IHSi-SiHIR* (vgl. Section 5.4.2). Die Charakterisierung von R*IHSi–SiH₂R* erfolgte im Gemisch. ¹H-NMR (C₆D₆, iTMS): $\delta =$ 1.243/1.306 (s/s; Sit-Bu₃/Sit-Bu₃), 3.809 (d von d; X-Teil eines AMX-Spinsystems; ${}^{2}J_{HH} = 8.4$; ${}^{3}J_{HH} = 1.0$ Hz; SiH von SiH₂), 4.013 (d von d; M-Teil eines AMX-Spinsystems; ${}^{2}J_{HH} = 8.4$; ${}^{3}J_{HH} = 4.2$ Hz; SiH von SiH₂), 4.445 (d von d; A-Teil eines AMX-Spinsystems; ${}^{3}J_{\text{HH}} = 4.2/1.0$ Hz; SiH von SiHI). ${}^{13}C{}^{1}H{}$ -NMR (C₆D₆, iTMS): $\delta = 23.88/31.64$ (3CMe₃/3CMe₃), 25.23/31.81 (3CMe₃/3CMe₃). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -95.72$ (SiH₂; bei ¹H-Kopplung: t von d mit ${}^{1}J_{\text{SiH}} = 172.4$ und ${}^{2}J_{\text{SiH}} = 6.1$ Hz), -69.00 (SiHI; bei ¹H-Kopplung: d von d mit ¹ $J_{SiH} = 183.3$ und $^{2}J_{\text{SiH}} = 8.9 \text{ Hz}$, 9.30/20.83 (Sit-Bu₃/Sit-Bu₃).

5.4.2. 1,2-Diiod-1,2-disupersilyldisilan R*IHSi-SiHIR*

Man erwärmt 0.080 g (0.174 mmol) R*H₂Si-SiH₂R* (vgl. Section 5.1.1) und 0.134 g (0.528 mmol) I_2 in 0.6 ml CH₂Cl₂ 2.5 h auf 70°C. Laut NMR hat sich dann R*IHSi-SiHIR* in hoher Ausbeute neben etwas R*I [8] und R*I₂Si-SiHIR* (vgl. Section 5.4.3) gebildet (Molverhältnis ca. 35:1:5). Nach Abkondensieren aller im OV flüchtigen Anteile erhält man nach Umkristallisieren des Rückstands aus 0.4 ml Benzol 0.045 g (0.063 mmol; 36%) reines R*IHSi-SiHIR* in Form eines Diastereomeren. Farblose Nadeln, Schmp. 210–214°C. ¹H-NMR (C₆D₆, iTMS): $\delta = 1.299$ (s; 2 Sit-Bu₃), 4.314 (s; 2SiHI). ${}^{13}C{}^{1}H{}$ -NMR (C₆D₆, iTMS): $\delta = 25.21/31.93$ (6CMe₃/6CMe₃). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -65.91$ (2SiHI; bei ¹H-Kopplung: d von d mit ${}^{1}J_{\text{SiH}} = 178.7$ und ${}^{2}J_{\text{SiH}} = 12.4$ Hz), 13.94 (2Sit-Bu₃). IR(KBr): v = 2111 cm⁻¹ (SiH). Röntgenstrukturanalyse: Vgl. Abb. 2 (Kristalle aus Benzol).

5.4.3. 1,1,2-Triiod-1,2-disupersilyldisilan R*I₂Si–SiHIR*

Man erwärmt 0.440 g (0.958 mmol) R*H₂Si-SiH₂R* (vgl. Section 5.1.1) und 1.46 g (5.75 mmol) I_2 in 20 ml Benzol 1 h auf 120°C. Laut ¹H-NMR (C_6D_6 , iTMS) liegen dann R*IHSi-SiHIR* (vgl. Section 5.4.2), R*I₂Si–SiHIR* (s/s; $Sit-Bu_3/Sit-Bu_3$) und R*I₂Si–SiI₂R* (vgl. Section 5.4.4) im Molverhältnis 3:3:1 neben R*I [8] vor. Die Charakterisierung von $R*I_2Si-SiHIR*$ erfolgte im Gemisch. ¹H-NMR (C₆D₆, iTMS): $\delta = 1.370/1.434$ (s/s; Sit-Bu₃/Sit-Bu₃), 4.507 (s; SiHI). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 25.32/32.46$ 27.20/32.51 $(3CMe_3/3CMe_3).$ $(3CMe_3/3CMe_3),$ ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -64.36$ (SiHI; bei ¹H-Kopplung: d mit ¹ $J_{SiH} = 173.4$ Hz), -56.22 (SiI₂), 15.18/25.85 (Sit-Bu₃/Sit-Bu₃). MS: m/z = 836 (M⁺; 79%), 779 (M⁺ – t-Bu; 100%), 709 (M⁺ – I; 15%), 636 (M⁺ – R^{*}H; 35%), 510 (M⁺ – R^{*}I; 100%). An*merkung*: $R*I_2Si-SiHIR*$ entsteht auch durch Protonierung von $R*I_2Si-SiNaIR*$ (aus $R*I_2Si-SiI_2R*$ [3] bzw. $R*SiI_3$ [2] und äquimolarer Menge NaR* in THF bei $-78^{\circ}C$) mit MeOH oder HBr.

5.4.4. Tetraiod-1,2-disupersilyldisilan R*I₂Si-SiI₂R*

Man erwärmt 0.120 g (0.262 mmol) R*H₂Si-SiH₂R* und 0.326 g (1.28 mmol) I₂ in 0.6 ml C_6D_6 in einem Bombenrohr (abgeschmolzenes NMR-Rohr) zunächst 60 Min auf 100°C und dann 20 Min auf 110°C (laut NMR praktisch quantitative Bildung von R*IHSi-SiHIR*). Dann wird unter mehrmaliger NMR-Kontrolle insgesamt vier Stunden lang auf 115°C und noch ca. zwei Stunden auf 120°C erhitzt (die Reaktion wird unterbrochen, wenn bei der ¹H-NMR-Kontrolle der Mutterlauge nur noch sehr wenig R*I2Si-SiHIR* vorliegt; längere Thermolyse führt bereits zur Umwandlung von R*I₂Si-SiI₂R* in R*I und R*ISi-SiI₃ und erhöht deshalb die Ausbeute nicht weiter). Beim Abkühlen des Ansatzes auf Raumtemperatur fällt die Hauptmenge des Produkts R*I₂Si-SiI₂R* aus. Nach Entfernen der Mutterlauge wird der Niederschlag mit 0.3 ml n-Heptan gewaschen, dann von ihm im ÖV alles noch überschüssige Iod entfernt. Man erhält 0.076 g (0.070 mmol; 30%) reines R*I₂Si-SiI₂R*. Farblose Festsubstanz, Schmp. 218 – 218.5°C (Zers.). ¹H-NMR (C₆D₆, iTMS): $\delta = 1.486$ (s; 2Sit-Bu₃). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 27.44/$ 33.02 (6*C*Me₃/6*C*Me₃). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -59.93$ (SiI₂), 34.07 (2Sit-Bu₃). MS: m/z = 962 $(M^+; 0.5\%), 905 (M^+ - t-Bu; 23\%), 636 (M^+ - t-$ Bu₃SiI; 100%), 579 (M⁺ – t-Bu₃SiI –t-Bu; 60%), 510 $(M^+ - t - Bu_3SiI - I; 15\%)$. Analyse $(C_{24}H_{54}I_4Si_2, M_r =$ 962.7): Ber. C, 29.94; H, 5.65. Gef. C, 29.06; H, 4.68%. Anmerkung: Die Mutterlauge der Umkristallisation enthält neben R*I2Si-SiI2R* viel R*I2Si-SiI3 und R*I.

5.4.5. Pentaiodsupersilyldisilan $R*I_2Si-SiI_3$

Man erwärmt 0.181 g (0.394 mmol) R*H₂Si-SiH₂R* (vgl. Section 5.1.1) und 0.60 g (2.4 mmol) I_2 in 1 ml Benzol 20 h auf 140°C. Laut NMR vollständiger Umsatz zu R*I₂Si–SiI₃ und R*I [8]. Nach Abkondensieren aller flüchtigen Anteile im ÖV, Lösen des Rückstands in 1 ml Heptan, Abkondensieren von Heptan (Wiederholung bis alles I₂ entfernt ist) und Umkristallisieren des Rückstands aus 1 ml CH₂Cl₂ bei - 78°C erhält man 0.189 g $R*I_2Si-SiI_3 + R*I$ im Molverhältnis ca. 1. Hellgraue Festsubstanz, Schmp. 192–194°C. ¹H-NMR $(C_6D_6, \text{ iTMS}): \delta = 1.312.$ ¹³C{¹H}-NMR $(C_6D_6, \text{ iTMS}): \delta = 1.312.$ iTMS): $\delta = 26.29/32.12$ (3CMe₃/3CMe₃). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -56.51$ (SiI₂), ? (SiI₃), 25.05 (Sit-Bu₃). Anmerkung: R*I₂Si-SiI₃ entsteht auch bei zehntägigem Erwärmen von R*I2Si-SiI2R* (vgl. Section 5.4.4) mit I₂ in Benzol auf 110°C neben R*I.

5.5. Darstellung von gemischt-halogenhaltigen Disupersilyldisilanen $R^*X_2Si-SiX_2R^*$ (vgl. Tabelle 1)

5.5.1. 1-Brom-2-chlor-1,2-disupersilyldisilan und 1-Brom-1-chlor-1,2-disupersilyldisilan R*HBrSi–SiClHR* und R*BrClSi–SiH₂R*

Zu 0.339 g (0.630 mmol) R*HBrSi-SiH₂R* (vgl. Section 5.3.1) in 20 ml CH₂Cl₂ (-10° C) werden im Dunkeln 0.63 mmol Cl_2 in 5 ml CCl_4 getropft. Nach Ersatz aller im ÖV flüchtigen Anteile durch C₆D₆ enthält die Lösung laut NMR 9% trans-R*HBrSi-SiClHR*, 44% gauche-R*HBrSi–SiClHR* und 47% R*BrClSi-SiH₂R* (die Zuordnung zur trans- und gauche-Konfiguration erfolgte aufgrund des Sachverhalts, daß sich offensichtlich das gauche-Isomere leichter bildet als das trans-Isomere). Die Charakterisierung der Produkte erfolgte in der Mischung. *Gauche*-R*HBrSi–SiClHR*: ¹H-NMR (C_6D_6 , iTMS): $\delta = 1.285/1.288$ (s/s; Sit-Bu₃/Sit-Bu₃), 4.940 (breit; Si-HBr), 5.594 (breit; SiHCl). ${}^{13}C{}^{1}H{}-NMR$ (C₆D₆, iTMS): $\delta = 24.44/24.69$ (3CMe₃/3CMe₃), 31.67–31.84 $(3CMe_3/3CMe_3)$. ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta =$ -31.06 (SiHBr; bei ¹H-Kopplung: d mit ¹J_{SiH} = 178.7 Hz), -19.29 (SiHCl; bei ¹H-Kopplung: d mit ¹J_{SiH} = 179.3 Hz), 14.63-16.09 (Sit-Bu₃/Sit-Bu₃). Trans-R*HBrSi–SiClHR*: ¹H-NMR iTMS): $(C_6 D_6,$ $\delta = 1.273/1.279$ (s/s; Sit-Bu₃/Sit-Bu₃), 4.928 (d; ³J_{HH} = 0.67 Hz; SiHBr), 5.636 (d; ${}^{3}J_{HH} = 0.67$ Hz; SiHCl). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 24.49/24.75$ (3CMe₃/ $3CMe_3$), 31.63/31.74 ($3CMe_3/3CMe_3$). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -30.57$ (SiHBr; bei ¹H-Kopplung: d von d mit ${}^{1}J_{\text{SiH}} = 180.9$ Hz und ${}^{2}J_{\text{SiH}} = 15.7$ Hz), -19.00 (SiHCl; bei ¹H-Kopplung: d von d mit ¹J_{SiH} = 181.3 Hz und ${}^{2}J_{\text{SiH}} = 15.4$ Hz), 14.26/15.16 (Sit-Bu₃/Sit-Bu₃). R*BrClSi–SiH₂R*: ¹H-NMR (C₆D₆, iTMS): $\delta = 1.243/1.354$ (s/s; Sit-Bu₃/Sit-Bu₃ an SiH₂/SiBrCl), 3.919/4.109 (d/d; ${}^{2}J_{\rm HH} = 4.68$, SiH/SiH von SiH₂). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 23.64/25.39 (3CMe_3/$ $3CMe_3$, 31.63 ($6CMe_3$). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -87.95$ (SiH₂; bei ¹H-Kopplung: d von d mit ${}^{1}J_{\text{SiH}} = 166.6$ und ${}^{1}J_{\text{SiH}} = 167.3$ Hz), 28.94 (SiBrCl; bei ¹H-Kopplung: t mit ² $J_{SiH} = 10.4$ Hz), 10.05/25.15 (Sit-Bu₃/Sit-Bu₃ an SiH₂/SiBrCl).

5.5.2. 1,1,2-Tribrom-2-chlor-1,2-disupersilyldisilan R*Br₂Si-SiBrClR*

Zu 0.058 g (0.08 mmol) R*Br₂Si–SiBrHR* (vgl. Section 5.3.5) in 5 ml CH₂Cl₂ (0°C) werden 0.16 mmol Cl₂ in 0.2 ml CCl₄ getropft. Laut NMR quantitative Bildung von R*Br₂Si–SiBrClR*. Nach Abkondensieren aller im ÖV flüchtigen Anteile verbleiben 0.055 g (0.08 mmol; 100%) R*Br₂Si–SiBrClR*. Farblose Festsubstanz, Schmp. 273–278°C (Zers.). ¹H-NMR (C₆D₆, iTMS): $\delta = 1.379/1.389$ (s/s; Sit-Bu₃/Sit-Bu₃). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 25.49/32.01$ (3CMe₃/3CMe₃), 25.86/32.04 (3CMe₃/3CMe₃). ²⁹Si{¹H}-NMR (C₆D₆,

eTMS): $\delta = 2.95$ (SiBr₂), 9.23 (SiBrCl), 29.14/30.20 (Sit-Bu₃/Sit-Bu₃). Analyse (C₂₄H₅₄Br₃ClSi₄, $M_r = 730.2$): Ber. C, 39.48; H, 7.45. Gef. C, 39.61; H, 7.50%.

5.5.3. 1-Brom-1,2,2-trichlor-1,2-disupersilyldisilan R*BrClSi-SiCl₂R*

Zu 0.339 g (0.630 mmol) R*HBrSi–SiH₂R* (vgl. Section 5.3.1) in 20 ml CH₂Cl₂ (0°C) werden im Dunkeln 2.20 mmol Cl₂ in 12 ml CH₂Cl₂ geropft. Nach Abkondensieren aller im ÖV flüchtigen Anteile und Umkristallisieren des Rückstands aus Toluol und Methylenchlorid erhält man 0.231 g (0.360 mmol; 57%) R*BrClSi–SiCl₂R*. Farbloser Feststoff, Schmp. 257°C (Zers.). ¹H-NMR (C₆D₆, iTMS): $\delta = 1.352/1.361$ (s/s; Si*t*-Bu₃/Si*t*-Bu₃). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 13.51/18.63$ (SiBrCl/SiCl₂), 27.94 (2Si*t*-Bu₃). MS: *m*/*z* = 638/640/642 (M⁺; 7%), 623/625/627 (M⁺ – Me; 11%), 581/583/585 (M⁺ – *t*-Bu; 100%).

5.5.4. 1,2-Dibrom-1,2-dichlor-1,2-disupersilyldisilan R*ClBrSi-SiBrClR*

Zu 0.100 g (0.162 mmol) gauche-R*BrHSi–SiHBrR* (vgl. Section 5.3.2) in 10 ml CH₂Cl₂ (0°C) werden 0.380 mmol Cl₂ in 1 ml CCl₄ getropft. Laut NMR quantitative Bildung des Disilans R*ClBrSi–SiBrClR*. Nach Abkondensieren aller im ÖV aller flüchtigen Anteile verbleiben 0.103 g (0.150 mmol; 94%) gauche-R*ClBrSi–SiBrClR* (es entsteht nur eines von zwei möglichen Diastereomeren; vgl. Section 5.5.3). Farblose Festsubstanz, Schmp. 269–273°C. ¹H-NMR (C₆D₆, iTMS): $\delta = 1.364$ (s; 2Sit-Bu₃). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 25.43/31.89$ (6CMe₃/6CMe₃). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = 12.15$ (2SiBrCl), 28.22 (2Sit-Bu₃). Analyse (C₂₄H₅₄Br₂Cl₂Si₄, $M_r = 685.8$): Ber. C, 42.04; H, 7.94. Gef. C, 41.93; H, 8.08%.

5.5.5. 1-Brom-2-chlor-1,2-diphenyl-1,2disupersilyldisilan R*PhBrSi-SiClPhR*

Zu 3.167 g (4.900 mmol) Diastereomerengemisch R*PhClSi–SiHPhR* (vgl. Section 5.2.4; *trans:gauche* = 1:2.7) in 150 ml Pentan (0°C) werden 0.792 g (5.00 mmol) Br₂ in 3 ml Pentan getropft. Laut NMR quantitative Bildung von trans- und gauche-R*PhBrSi-SiClPhR* im Molverhältnis 1:2.7 (Zuordnung aufgrund unveränderten Diastereomerenanteile). der Nach Abkondensieren aller flüchtigen Anteile im ÖV und Aufschlämmen des Rückstands in Heptan verbleiben 3.487 g (4.81 mmol; 98%) R*PhBrSi-SiClPhR* Die Charakterisierung bezieht sich auf das farblose, in Pentan, Benzol, Et₂O und THF schwerlösliche Diastereomerengemisch: MS: m/z = 724/726/728 (M⁺; 1%), 709/ 711/713 (M⁺ – Me; 2%), 667/669/671 (M⁺ – t-Bu; 27%), 525/527/529 (M⁺ – Sit-Bu₃; 3%); Analyse $(C_{36}H_{64}BrClSi_4, M_r = 724.6)$: Ber. C, 59.67; H, 8.90.

Gef. C, 58.88; H, 9.03%. Trans-R*PhBrSi-SiClPhR* (9t) (Schmp. 259–260°C): ¹H-NMR (C_6D_6 , iTMS): $\delta = 1.130$ (s; Sit-Bu₃), 1.140 (breit; Sit-Bu₃), 7.1-8.4 (Multipletts, CH von 2 Ph). ${}^{13}C{}^{1}H$ -NMR (C₆D₆, iTMS): $\delta = 25.10/31.49 (3CMe_3/3CMe_3), 25.48 (breit)/$ 32.03 ($3CMe_3/3CMe_3$), 126.7-138.4 (C von 2Ph). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = 1.48$ (SiCl), ? (SiBr), 25.26 (2Sit-Bu₃). Röntgenstrukturanalyse: Vgl. Abb. 5 (Kristalle von 9t aus Benzol). Gauche-R*PhBrSi-SiClPhR* (9g): ¹H-NMR (C₆D₆, iTMS): $\delta = 1.128$ (breit; 2Sit-Bu₃), 7.1–8.4 (Multipletts, CH von 2Ph). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 24.96/$ 31.85 $(3CMe_3/3CMe_3)$, 25.34 (breit)/31.89 $(3CMe_3/$ $3CMe_3$), 126.7–138.4 (C von 2 Ph). ²⁹Si{¹H}-NMR $(C_6D_6, eTMS): \delta = -2.31$ (SiCl), ? (SiBr), 24.58 (2Sit- Bu_3).

5.5.6. 1,2-Dibrom-1-chlor-1,2-disupersilyldisilan R*ClBrSi–SiBrHR*

Zu 0.032 g (0.052 mmol) gauche-R*BrHSi–SiHBrR* (vgl. Section 5.3.2) in 10 ml CH_2Cl_2 (0°C) tropft man 0.040 mmol Cl₂ in 1 ml CCl₄. Nach Abkondensieren aller im ÖV flüchtigen Anteile und Lösen des Rückstands in C_6D_6 enthält die Lösung laut NMR 30% R*BrHSi–SiHBrR* und 70% Edukt gauche-R*ClBrSi-SiBrHR* (es bildet sich nur ein Diastereomer; vgl. Section 5.5.3). Die Charakterisierung erfolgte im Gemisch. ¹H-NMR (C₆D₆, iTMS): $\delta = 1.299/1.348$ (s/s; Sit-Bu₃ an SiHBr/SiBrCl), 5.036 (s; SiHBr). ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -31.22$ (SiH; bei ¹H-Kopplung: d mit ${}^{1}J_{SiH} = 177.8$ Hz), 16.83 (SiBrCl), 16.81/23.14 (Sit-Bu₃/Sit-Bu₃ an SiHBr/SiBrCl).

5.6. Kristallstrukturen der Verbindungen 1–10 (Tabelle 2)

Für die Strukturbestimmungen von 1, 2, 3, 4g, 5g, 7g/8g, 8t, 10t wurde ein Mach 3 Gerät der Firma Nonius, für 6g/6t und 9t ein Siemens P4-Gerät mit CCD-Flächendetektor genutzt. Die Strukturlösungen und Verfeinerungen erfolgten im Falle ersterer Verbindungen mit SHELX-86 und SHELXL-93, im Falle letztere Verbindungen mit SHELXL-93 und SHELXTL-Vers. 5, jeweils direkte Methoden mit voller Matrix gegen F^2 . Die Lagen der Nichtwasserstoffatome sind in anisotroper Beschreibung verfeinert (Ausnahme Me in 6), H-Atome in berechneten Lagen und mit dem riding model in die Verfeinerung einbezogen. Die Strukturen der untersuchten Verbindungen geben die Abb. 1–6 wieder, kristallographischen Daten faßt Tabelle 3 zusammen.

6. Supplementary material

Die kristallographischen Daten (ohne Strukturfaktoren) der Verbindungen wurden als 'supplementary publication' no. CCDC-138952 (1), CCDC-138955 (2), CCDC-138954 (3), CCDC-138953 (4g), CCDC-138956 (5g), CCDC-139121 (6), CCDC-137851 (7g/8g), CCDC-138.949 (8t), CCDC-138885 (9t), CCDC-138950 (10t) beim Cambridge Crystallographic Data Centre hinterlegt. Kopien der Daten können kostenlos bei folgender Adresse in Großbritannien angefordert werden: CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk).

Anerkennung

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für finanzielle Unterstützung der Untersuchungen.

Literatur

- 137. Mitteilung über Verbindungen des Siliciums. Zugleich 22. Mitteilung über sterisch überladene Verbindungen des Siliciums. 136. (21.) bzw. 135. (20.) Mitteilung: Ref. [2].
- [2] N. Wiberg, W. Niedermayer, Z. Naturforsch. 55b (2000) 406.
- [3] (a) N. Wiberg, H. Auer, S. Wagner, K. Polborn, G. Kramer, J. Organomet. Chem. xxx (2000) xxx, nachfolgend. (b) N. Wiberg, W. Niedermayer, K. Polborn, Eur. J. Inorg. Chem. (2000) xxx, in Vorbereitung.
- [4] N. Wiberg, Coord. Chem. Rev. 163 (1997) 217.
- [5] N. Wiberg, ChM.M. Finger, H. Auer, K. Polborn, J. Organomet. Chem. 521 (1996) 377.
- [6] (a) N. Wiberg, in: B. Marciniec, J. Chojnowksi (Eds.), Progress in Organosilicon Chemistry, Gordon and Breach, Amsterdam 1995, p. S19. (b) N. Wiberg, in: N. Auner, J. Weis (Eds.), Organosilicon Chemistry II, VCH, Weinheim, 1996, p. S367. (c) N. Wiberg, H. Auer, Ch. M.M. Finger, K. Polborn, in: N. Auner, J. Weis (Eds.), Organosilicon Chemistry III, VCH, Weinheim 1998, p. S296. (d) N. Wiberg, W. Niedermayer, K. Polborn, H. Nöth, J. Knizek, D. Fenske, G. Baum, in: N. Auner, J. Weis (Eds.), Organosilicon Chemistry IV, Wiley-VCH, Weinheim, 2000, p. S93.
- [7] N. Wiberg, W. Niedermayer, H. Nöth, K. Polborn, Z. Anorg. Allg. Chem. (in Druck).
- [8] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Schuster, H. Nöth, I. Krossing, M. Schmidt-Amelunxen, T. Seifert, J. Organomet. Chem. 542 (1997) 1.
- [9] N. Wiberg, W. Hochmuth, T. Blank, K. Jaser, I. Prahl, unveröffentlicht.
- [10] (a) W.S. Sheldrick, in: S. Patai, Z. Rappoport (Eds.), The Chemistry of Organic Silicon Compounds, vol. 1, Wiley, New York, 1989, p. S227. (b) M. Kaftory, M. Kapon, M. Botoshansky, in: Z. Rappoport, Y. Apeloig (Eds.), The Chemistry of Organic Silicon Compounds, vol. 2, Wiley, New York, 1998, p. 181.
- [11] (a) J.D. Kennedy, W. McFarlane, in: R.K. Harris, B.E. Mann (Eds.), NMR and the Periodic Table, Academic Press, New York, 1978. (b) J.D. Kennedy, W. McFarlane, in: J. Mason (Eds.), Multinuclear NMR, Plenum Press, New York, 1987.